Di Zhang, Wanyu Wei, Tianxiang Xie, Xue Zhou, Xu He, Jie Qiao, Rui Guo*, Gang Jin* and Ningbo Li*,
{"title":"Magnetic Nanocarriers for pH/GSH/NIR Triple-Responsive Drug Release and Synergistic Therapy in Tumor Cells","authors":"Di Zhang, Wanyu Wei, Tianxiang Xie, Xue Zhou, Xu He, Jie Qiao, Rui Guo*, Gang Jin* and Ningbo Li*, ","doi":"10.1021/acsomega.4c0826710.1021/acsomega.4c08267","DOIUrl":null,"url":null,"abstract":"<p >In this study, the mesoporous Fe<sub>3</sub>O<sub>4</sub> nanodrug carriers containing disulfide bonds (CHO-SMNPs) were successfully synthesized and characterized. Doxorubicin (DOX) was loaded onto the CHO-SMNPs as a model drug and gatekeeper through the formation of imine bonds with the aldehyde groups on the surface of the mesoporous materials. This drug carrier demonstrates effective drug release triggered by pH, glutathione (GSH), and near-infrared (NIR) light, along with satisfactory photothermal conversion efficiency under NIR irradiation at 808 nm. Furthermore, CHO-SMNPs exhibit excellent blood compatibility and biodegradability. They also show good biocompatibility and efficient cellular uptake in HeLa and MCF-7 cancer cells. Most importantly, the CHO-SMNPs/DOX has shown significant effectiveness in killing both HeLa and MCF-7 cancer cells. Consequently, CHO-SMNPs/DOX presents substantial potential as a magnetic-targeted, pH/GSH/NIR triple-triggered drug delivery system for synergistic chemo-photothermal therapy in tumor treatment.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49749–49758 49749–49758"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08267","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c08267","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the mesoporous Fe3O4 nanodrug carriers containing disulfide bonds (CHO-SMNPs) were successfully synthesized and characterized. Doxorubicin (DOX) was loaded onto the CHO-SMNPs as a model drug and gatekeeper through the formation of imine bonds with the aldehyde groups on the surface of the mesoporous materials. This drug carrier demonstrates effective drug release triggered by pH, glutathione (GSH), and near-infrared (NIR) light, along with satisfactory photothermal conversion efficiency under NIR irradiation at 808 nm. Furthermore, CHO-SMNPs exhibit excellent blood compatibility and biodegradability. They also show good biocompatibility and efficient cellular uptake in HeLa and MCF-7 cancer cells. Most importantly, the CHO-SMNPs/DOX has shown significant effectiveness in killing both HeLa and MCF-7 cancer cells. Consequently, CHO-SMNPs/DOX presents substantial potential as a magnetic-targeted, pH/GSH/NIR triple-triggered drug delivery system for synergistic chemo-photothermal therapy in tumor treatment.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.