Renally Excretable Molybdenum Disulfide Nanoparticles as Contrast Agents for Dual-Energy Mammography and Computed Tomography

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Lenitza M. Nieves, Emily K. Berkow, Katherine J. Mossburg, Nathaniel H. O, Kristen C. Lau, Derick N. Rosario, Priyash Singh, Xingjian Zhong, Andrew D. A. Maidment and David P. Cormode*, 
{"title":"Renally Excretable Molybdenum Disulfide Nanoparticles as Contrast Agents for Dual-Energy Mammography and Computed Tomography","authors":"Lenitza M. Nieves,&nbsp;Emily K. Berkow,&nbsp;Katherine J. Mossburg,&nbsp;Nathaniel H. O,&nbsp;Kristen C. Lau,&nbsp;Derick N. Rosario,&nbsp;Priyash Singh,&nbsp;Xingjian Zhong,&nbsp;Andrew D. A. Maidment and David P. Cormode*,&nbsp;","doi":"10.1021/acs.bioconjchem.4c0050810.1021/acs.bioconjchem.4c00508","DOIUrl":null,"url":null,"abstract":"<p >Compared with conventional mammography, contrast-enhanced dual-energy mammography (DEM) can improve tumor detection for people with dense breasts. However, currently available iodine-based contrast agents have several drawbacks such as their contraindication for use with renal insufficiency, high-dose requirement, and suboptimal contrast production. Molybdenum disulfide nanoparticles (MoS<sub>2</sub> NPs) have been shown to attenuate X-rays due to molybdenum’s relatively high atomic number while having good biocompatibility. However, work exploring their use as X-ray contrast agents has been limited. In this study, we have developed a novel aqueous synthesis yielding ultrasmall, 2 nm MoS<sub>2</sub> NPs with various small molecule coatings, including glutathione (GSH), penicillamine, and 2-mercaptopropionic acid (2MPA). These nanoparticles were shown to have low in vitro cytotoxicity when tested with various cell lines at concentrations up to 1 mg/mL. For the first time, these particles were shown to generate clinically relevant contrast in DEM. In DEM, MoS<sub>2</sub> NPs generated higher contrast than iopamidol, a commercially available X-ray contrast agent, while also generating substantial contrast in CT. Moreover, MoS<sub>2</sub> NPs demonstrated rapid elimination in vivo, mitigating long-term toxicity concerns. Together, the results presented here suggest the potential utility of MoS<sub>2</sub> NPs as a dual-modality X-ray contrast agent for DEM and CT.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":"35 12","pages":"2006–2014 2006–2014"},"PeriodicalIF":4.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.4c00508","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Compared with conventional mammography, contrast-enhanced dual-energy mammography (DEM) can improve tumor detection for people with dense breasts. However, currently available iodine-based contrast agents have several drawbacks such as their contraindication for use with renal insufficiency, high-dose requirement, and suboptimal contrast production. Molybdenum disulfide nanoparticles (MoS2 NPs) have been shown to attenuate X-rays due to molybdenum’s relatively high atomic number while having good biocompatibility. However, work exploring their use as X-ray contrast agents has been limited. In this study, we have developed a novel aqueous synthesis yielding ultrasmall, 2 nm MoS2 NPs with various small molecule coatings, including glutathione (GSH), penicillamine, and 2-mercaptopropionic acid (2MPA). These nanoparticles were shown to have low in vitro cytotoxicity when tested with various cell lines at concentrations up to 1 mg/mL. For the first time, these particles were shown to generate clinically relevant contrast in DEM. In DEM, MoS2 NPs generated higher contrast than iopamidol, a commercially available X-ray contrast agent, while also generating substantial contrast in CT. Moreover, MoS2 NPs demonstrated rapid elimination in vivo, mitigating long-term toxicity concerns. Together, the results presented here suggest the potential utility of MoS2 NPs as a dual-modality X-ray contrast agent for DEM and CT.

Abstract Image

肾脏可排泄二硫化钼纳米粒子作为双能量乳腺 X 射线和计算机断层扫描的对比剂
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioconjugate Chemistry
Bioconjugate Chemistry 生物-化学综合
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信