Aamir Mehmood, Daixi Li, Jiayi Li, Aman Chandra Kaushik* and Dong-Qing Wei*,
{"title":"Supervised Screening of EGFR Inhibitors Validated through Computational Structural Biology Approaches","authors":"Aamir Mehmood, Daixi Li, Jiayi Li, Aman Chandra Kaushik* and Dong-Qing Wei*, ","doi":"10.1021/acsmedchemlett.4c0038510.1021/acsmedchemlett.4c00385","DOIUrl":null,"url":null,"abstract":"<p >One of the prominent challenges in breast cancer (BC) treatment is human epidermal growth factor receptor (EGFR) overexpression, which facilitates tumor proliferation and presents a viable target for anticancer therapies. This study integrates multiomics data to pinpoint promising therapeutic compounds and employs a machine learning (ML)-based similarity search to identify effective alternatives. We used BC cell line data from the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) databases and single-cell RNA sequencing (scRNA-seq) information that established afatinib as an efficacious candidate demonstrating superior IC<sub>50</sub> values. Next, ML models, including support vector machine (SVM), artificial neural networks (ANN), and random forest (RF), were trained on ChEMBL data to classify compounds with similar activity to the reference drug as active or inactive. The promising candidates underwent computational structural biology assessments for their molecular interactions and conformational dynamics. Our findings indicate that compounds ChEMBL233324, ChEMBL233325, ChEMBL234580, and ChEMBL372692 exhibit potent repressive action against EGFR, underscoring their potential as active antibreast cancer agents.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"15 12","pages":"2190–2200 2190–2200"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00385","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
One of the prominent challenges in breast cancer (BC) treatment is human epidermal growth factor receptor (EGFR) overexpression, which facilitates tumor proliferation and presents a viable target for anticancer therapies. This study integrates multiomics data to pinpoint promising therapeutic compounds and employs a machine learning (ML)-based similarity search to identify effective alternatives. We used BC cell line data from the Cancer Cell Line Encyclopedia (CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) databases and single-cell RNA sequencing (scRNA-seq) information that established afatinib as an efficacious candidate demonstrating superior IC50 values. Next, ML models, including support vector machine (SVM), artificial neural networks (ANN), and random forest (RF), were trained on ChEMBL data to classify compounds with similar activity to the reference drug as active or inactive. The promising candidates underwent computational structural biology assessments for their molecular interactions and conformational dynamics. Our findings indicate that compounds ChEMBL233324, ChEMBL233325, ChEMBL234580, and ChEMBL372692 exhibit potent repressive action against EGFR, underscoring their potential as active antibreast cancer agents.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.