{"title":"Formulation of Polymer-Augmented Surfactant-Based Oil–Water Microemulsions for Application in Enhanced Oil Recovery","authors":"Debanjan Ray, Lavisha Jangid, Dinesh Joshi, Shubham Prakash, Keka Ojha, Ofer Manor and Ajay Mandal*, ","doi":"10.1021/acsomega.4c0982910.1021/acsomega.4c09829","DOIUrl":null,"url":null,"abstract":"<p >This research explores the development of engineered oil–water microemulsions stabilized by a synergistic combination of polymer and surfactant to enhance stability and interfacial properties for improved enhanced oil recovery (EOR). Conventional surfactant-stabilized emulsions often suffer from phase instability and limited wettability alteration during water flooding and chemical injection, hindering the EOR efficiency. In contrast, our formulations incorporating polymers significantly increase the emulsion viscosity and resilience to temperature fluctuations, resulting in enhanced phase stability. Experimental investigations reveal that while the water-microemulsion interfacial tension (IFT) increases with salinity, the oil-microemulsion IFT decreases substantially, achieving an optimal IFT of 4.43 × 10<sup>–4</sup> mN/m at balanced salinity levels. The microemulsions exhibit remarkable stability across varying temperatures, successfully transitioning between Winsor type II and III phases, which is critical for effective EOR applications. Notably, the addition of polymers enhances the viscosity of the surfactant-stabilized emulsion from 50 mPa·s at a shear rate of 10 s<sup>–1</sup> to 300 mPa·s, significantly improving emulsion stability, as confirmed by measured zeta potential values of −31.1 mV for the surfactant system and −33.2 mV for the polymer-augmented surfactant system. These enhancements contribute to improved sweep efficiency during the oil recovery processes. Furthermore, the microemulsions effectively alter the sandstone wettability from oil-wet to water-wet, promoting better oil displacement. Core flooding experiments demonstrate that injecting one pore volume of the polymer-augmented surfactant-stabilized microemulsion results in an additional 20.58% oil recovery compared with conventional water flooding.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"50024–50040 50024–50040"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09829","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09829","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This research explores the development of engineered oil–water microemulsions stabilized by a synergistic combination of polymer and surfactant to enhance stability and interfacial properties for improved enhanced oil recovery (EOR). Conventional surfactant-stabilized emulsions often suffer from phase instability and limited wettability alteration during water flooding and chemical injection, hindering the EOR efficiency. In contrast, our formulations incorporating polymers significantly increase the emulsion viscosity and resilience to temperature fluctuations, resulting in enhanced phase stability. Experimental investigations reveal that while the water-microemulsion interfacial tension (IFT) increases with salinity, the oil-microemulsion IFT decreases substantially, achieving an optimal IFT of 4.43 × 10–4 mN/m at balanced salinity levels. The microemulsions exhibit remarkable stability across varying temperatures, successfully transitioning between Winsor type II and III phases, which is critical for effective EOR applications. Notably, the addition of polymers enhances the viscosity of the surfactant-stabilized emulsion from 50 mPa·s at a shear rate of 10 s–1 to 300 mPa·s, significantly improving emulsion stability, as confirmed by measured zeta potential values of −31.1 mV for the surfactant system and −33.2 mV for the polymer-augmented surfactant system. These enhancements contribute to improved sweep efficiency during the oil recovery processes. Furthermore, the microemulsions effectively alter the sandstone wettability from oil-wet to water-wet, promoting better oil displacement. Core flooding experiments demonstrate that injecting one pore volume of the polymer-augmented surfactant-stabilized microemulsion results in an additional 20.58% oil recovery compared with conventional water flooding.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.