Nuria Aguilar, Cristina Benito, Sonia Martel-Martín, Alberto Gutiérrez, Sara Rozas, Pedro A. Marcos, Alfredo Bol-Arreba, Mert Atilhan and Santiago Aparicio*,
{"title":"Insights into Carvone: Fatty Acid Hydrophobic NADES for Alkane Solubilization","authors":"Nuria Aguilar, Cristina Benito, Sonia Martel-Martín, Alberto Gutiérrez, Sara Rozas, Pedro A. Marcos, Alfredo Bol-Arreba, Mert Atilhan and Santiago Aparicio*, ","doi":"10.1021/acs.energyfuels.4c0362310.1021/acs.energyfuels.4c03623","DOIUrl":null,"url":null,"abstract":"<p >The urge to adopt cleaner technologies drives the search for novel and sustainable materials such as Hydrophobic Natural Deep Eutectic Solvents (HNADESs), a new class of green solvents characterized by their low toxicity, biodegradability, and tunable properties, aiming to be applied in various fields for handling non-polar substances. In this work, the solubilization of hydrocarbons in type V HNADESs (non-ionic organic molecules) formed by mixing carvone, a natural monoterpenoid, with organic acids (hexanoic to decanoic acids) is examined by applying both experimental and theoretical approaches. The synthesis and physicochemical characterization of different HNADESs allowed us to tailor their properties, aiming for optimal interactions with desired hydrocarbons. The solubilization of hydrocarbons in CAR:C10AC (1:1) HNADES is evaluated in terms of HNADES content, temperature, and the structure of the hydrocarbon itself (C6, C10, and C14 being the selected ones). To gain deeper insights into the underlying mechanisms of interactions between the solvents and the alkanes, a comprehensive multiscale computational study was carried out to analyze the nature of the interactions, the changes upon formation of HNADESs and hydrocarbon solubilization in the fluid’s nanostructure, and the possible toxicological effects of the solvents. The findings hold the potential to significantly impact the realm of hydrocarbon exploration and utilization.</p>","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":"38 24","pages":"23633–23653 23633–23653"},"PeriodicalIF":5.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.energyfuels.4c03623","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c03623","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The urge to adopt cleaner technologies drives the search for novel and sustainable materials such as Hydrophobic Natural Deep Eutectic Solvents (HNADESs), a new class of green solvents characterized by their low toxicity, biodegradability, and tunable properties, aiming to be applied in various fields for handling non-polar substances. In this work, the solubilization of hydrocarbons in type V HNADESs (non-ionic organic molecules) formed by mixing carvone, a natural monoterpenoid, with organic acids (hexanoic to decanoic acids) is examined by applying both experimental and theoretical approaches. The synthesis and physicochemical characterization of different HNADESs allowed us to tailor their properties, aiming for optimal interactions with desired hydrocarbons. The solubilization of hydrocarbons in CAR:C10AC (1:1) HNADES is evaluated in terms of HNADES content, temperature, and the structure of the hydrocarbon itself (C6, C10, and C14 being the selected ones). To gain deeper insights into the underlying mechanisms of interactions between the solvents and the alkanes, a comprehensive multiscale computational study was carried out to analyze the nature of the interactions, the changes upon formation of HNADESs and hydrocarbon solubilization in the fluid’s nanostructure, and the possible toxicological effects of the solvents. The findings hold the potential to significantly impact the realm of hydrocarbon exploration and utilization.
期刊介绍:
Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.