Dopant-Free Spiro-OMe2 Imidazole-Based Hole-Transporting Material for Stable and Low-Cost Organic–Inorganic Perovskite Solar Cell

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Leila Haji-khan Mirzaei, Hashem Shahroosvand*, Afsaneh Farokhi, Elahe Bayat, Sebastiano Bellani*, Cosimo Anichini, Mohsen Ameri and Francesco Bonaccorso*, 
{"title":"Dopant-Free Spiro-OMe2 Imidazole-Based Hole-Transporting Material for Stable and Low-Cost Organic–Inorganic Perovskite Solar Cell","authors":"Leila Haji-khan Mirzaei,&nbsp;Hashem Shahroosvand*,&nbsp;Afsaneh Farokhi,&nbsp;Elahe Bayat,&nbsp;Sebastiano Bellani*,&nbsp;Cosimo Anichini,&nbsp;Mohsen Ameri and Francesco Bonaccorso*,&nbsp;","doi":"10.1021/acsomega.4c0544010.1021/acsomega.4c05440","DOIUrl":null,"url":null,"abstract":"<p >The engineering of charge transport materials, with electronic characteristics that result in effective charge extraction and transport dynamics, is pivotal for the realization of efficient perovskite solar cells (PSCs). Herein, we elucidate the critical role of terminal substituent methoxy groups (−OCH<sub>3</sub>) on the bandgap tuning of the spiro-like hole transport materials (HTMs) to realize performant and cost-effective PSCs. By considering spiro-OMeTAD as the benchmark HTM, we kept the backbone of spiro while replacing diphenylamine with phenanthrenimidazole. This approach significantly decreases the cost of spiro-OMeTAD by reducing the cost of the ancillary group from 0.051 to 0.012 $/g. By increasing the number of methoxy groups on the ancillary ligand from four to eight, the power conversion efficiency (PCE) of the corresponding PSCs containing dopants passed from 17.10% to 18.70%, approaching the value achieved using spiro-OMeTAD containing dopants (PCE = 19.26%). Remarkably, the devices based on dopant-free spiro-OMeTAD have shown a significant loss of PCE, which decreased from 12.9% to 10.1% after 300 h (to 8.2% after 600 h) of light soaking at an open circuit voltage. On the contrary, the cells based on the designed dopant-free HTM demonstrated optimal PCE retention, experiencing a minor drop from 14.4% to 14.1% and 13.2% after 300 and 600 h, respectively, of light soaking at open-circuit voltage.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49132–49142 49132–49142"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c05440","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c05440","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The engineering of charge transport materials, with electronic characteristics that result in effective charge extraction and transport dynamics, is pivotal for the realization of efficient perovskite solar cells (PSCs). Herein, we elucidate the critical role of terminal substituent methoxy groups (−OCH3) on the bandgap tuning of the spiro-like hole transport materials (HTMs) to realize performant and cost-effective PSCs. By considering spiro-OMeTAD as the benchmark HTM, we kept the backbone of spiro while replacing diphenylamine with phenanthrenimidazole. This approach significantly decreases the cost of spiro-OMeTAD by reducing the cost of the ancillary group from 0.051 to 0.012 $/g. By increasing the number of methoxy groups on the ancillary ligand from four to eight, the power conversion efficiency (PCE) of the corresponding PSCs containing dopants passed from 17.10% to 18.70%, approaching the value achieved using spiro-OMeTAD containing dopants (PCE = 19.26%). Remarkably, the devices based on dopant-free spiro-OMeTAD have shown a significant loss of PCE, which decreased from 12.9% to 10.1% after 300 h (to 8.2% after 600 h) of light soaking at an open circuit voltage. On the contrary, the cells based on the designed dopant-free HTM demonstrated optimal PCE retention, experiencing a minor drop from 14.4% to 14.1% and 13.2% after 300 and 600 h, respectively, of light soaking at open-circuit voltage.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信