Development of Novel Silicon-Based Hydrophobic Tags (SiHyT) for Targeted Proteins Degradation

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL
Lan Ma, Kun Zhang, Ziqi Huang, Yuda Guo, Ning Liu, Jia Chen, Xinyue Wang, Ying Liu, Mei Li, Jinxiao Li, Cheng Yang*, Shuangwei Liu* and Guang Yang*, 
{"title":"Development of Novel Silicon-Based Hydrophobic Tags (SiHyT) for Targeted Proteins Degradation","authors":"Lan Ma,&nbsp;Kun Zhang,&nbsp;Ziqi Huang,&nbsp;Yuda Guo,&nbsp;Ning Liu,&nbsp;Jia Chen,&nbsp;Xinyue Wang,&nbsp;Ying Liu,&nbsp;Mei Li,&nbsp;Jinxiao Li,&nbsp;Cheng Yang*,&nbsp;Shuangwei Liu* and Guang Yang*,&nbsp;","doi":"10.1021/acs.jmedchem.4c0227310.1021/acs.jmedchem.4c02273","DOIUrl":null,"url":null,"abstract":"<p >Recent advances in targeted protein degradation (TPD) have propelled it to the forefront of small molecular drug discovery. Among these, hydrophobic tagging (HyT) strategies have garnered significant interest. Carbon-based hydrophobic tags have been recognized as effective Hyts for degrading a variety of target proteins. In this study, we introduce a novel class of potential EGFR degraders for the first time, which combine Gefitinib with silicon-based hydrophobic tags (SiHyT). The most promising candidate, degrader <b>7</b>, which links Gefitinib to a simple TBDPS silyl ether, has shown efficacy in degrading mutant EGFRs via the ubiquitin-proteosome system (UPS) both in vitro and in vivo. Notably, degrader <b>7</b> exhibits enhanced oral bioavailability owing to its superior metabolic stability compared to traditional carbon-based Hyts. Mechanistically, it was revealed that degrader <b>7</b> disrupts EGFR stability by dissociating the EGFR-HSP90 complex and recruiting E3 ligase, RNF149. More importantly, the potent and selective PD-L1 and BTK degraders were discovered successfully by utilizing the SiHyT strategy. The development of these innovative SiHyT compounds could broaden the repertoire of HyTs, enhancing the future design of TPD agents.</p>","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"67 23","pages":"21344–21363 21344–21363"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jmedchem.4c02273","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Recent advances in targeted protein degradation (TPD) have propelled it to the forefront of small molecular drug discovery. Among these, hydrophobic tagging (HyT) strategies have garnered significant interest. Carbon-based hydrophobic tags have been recognized as effective Hyts for degrading a variety of target proteins. In this study, we introduce a novel class of potential EGFR degraders for the first time, which combine Gefitinib with silicon-based hydrophobic tags (SiHyT). The most promising candidate, degrader 7, which links Gefitinib to a simple TBDPS silyl ether, has shown efficacy in degrading mutant EGFRs via the ubiquitin-proteosome system (UPS) both in vitro and in vivo. Notably, degrader 7 exhibits enhanced oral bioavailability owing to its superior metabolic stability compared to traditional carbon-based Hyts. Mechanistically, it was revealed that degrader 7 disrupts EGFR stability by dissociating the EGFR-HSP90 complex and recruiting E3 ligase, RNF149. More importantly, the potent and selective PD-L1 and BTK degraders were discovered successfully by utilizing the SiHyT strategy. The development of these innovative SiHyT compounds could broaden the repertoire of HyTs, enhancing the future design of TPD agents.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信