Jing Yu, Ivan Pinto-Huguet, Chao Yue Zhang, Yingtang Zhou, Yaolin Xu, Alen Vizintin, Juan-Jesús Velasco-Vélez, Xueqiang Qi, Xiaobo Pan, Gozde Oney, Annabel Olgo, Katharina Märker, Leonardo M. Da Silva, Yufeng Luo, Yan Lu, Chen Huang, Eneli Härk, Joe Fleming, Pascale Chenevier, Andreu Cabot*, Yunfei Bai, Marc Botifoll, Ashley P. Black, Qi An, Tazdin Amietszajew and Jordi Arbiol*,
{"title":"Mechanistic Insights and Technical Challenges in Sulfur-Based Batteries: A Comprehensive In Situ/Operando Monitoring Toolbox","authors":"Jing Yu, Ivan Pinto-Huguet, Chao Yue Zhang, Yingtang Zhou, Yaolin Xu, Alen Vizintin, Juan-Jesús Velasco-Vélez, Xueqiang Qi, Xiaobo Pan, Gozde Oney, Annabel Olgo, Katharina Märker, Leonardo M. Da Silva, Yufeng Luo, Yan Lu, Chen Huang, Eneli Härk, Joe Fleming, Pascale Chenevier, Andreu Cabot*, Yunfei Bai, Marc Botifoll, Ashley P. Black, Qi An, Tazdin Amietszajew and Jordi Arbiol*, ","doi":"10.1021/acsenergylett.4c0270310.1021/acsenergylett.4c02703","DOIUrl":null,"url":null,"abstract":"<p >Batteries based on sulfur cathodes offer a promising energy storage solution due to their potential for high performance, cost-effectiveness, and sustainability. However, commercial viability is challenged by issues such as polysulfide migration, volume changes, uneven phase nucleation, limited ion transport, and sluggish sulfur redox kinetics. Addressing these challenges requires insights into the structural, morphological, and chemical evolution of phases, the associated volume changes and internal stresses, and ion and polysulfide diffusion within the battery. Such insights can only be obtained through real-time reaction monitoring within the battery’s operational environment, supported by molecular dynamics simulations and advanced artificial intelligence-driven data analysis. This review provides an overview of <i>in situ/operando</i> techniques for real-time tracking of these processes in sulfur-based batteries and explores the integration of simulations with experimental data to provide a holistic understanding of the critical challenges, enabling advancements in their development and commercial adoption.</p>","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"9 12","pages":"6178–6214 6178–6214"},"PeriodicalIF":19.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsenergylett.4c02703","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsenergylett.4c02703","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Batteries based on sulfur cathodes offer a promising energy storage solution due to their potential for high performance, cost-effectiveness, and sustainability. However, commercial viability is challenged by issues such as polysulfide migration, volume changes, uneven phase nucleation, limited ion transport, and sluggish sulfur redox kinetics. Addressing these challenges requires insights into the structural, morphological, and chemical evolution of phases, the associated volume changes and internal stresses, and ion and polysulfide diffusion within the battery. Such insights can only be obtained through real-time reaction monitoring within the battery’s operational environment, supported by molecular dynamics simulations and advanced artificial intelligence-driven data analysis. This review provides an overview of in situ/operando techniques for real-time tracking of these processes in sulfur-based batteries and explores the integration of simulations with experimental data to provide a holistic understanding of the critical challenges, enabling advancements in their development and commercial adoption.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.