Innovative Approach to Sustainable Fertilizer Production: Leveraging Electrically Assisted Conversion of Sewage Sludge for Nutrient Recovery

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Gerardine G. Botte*, Dayana Donneys-Victoria, Christian E. Alvarez-Pugliese, Jedidian Adjei, Selin Sahin, Nathan W. Wilson, Kayleigh Millerick, Amy Hardberger, Ariel L. Furst, Nicole Hu and Andrew J. Medford, 
{"title":"Innovative Approach to Sustainable Fertilizer Production: Leveraging Electrically Assisted Conversion of Sewage Sludge for Nutrient Recovery","authors":"Gerardine G. Botte*,&nbsp;Dayana Donneys-Victoria,&nbsp;Christian E. Alvarez-Pugliese,&nbsp;Jedidian Adjei,&nbsp;Selin Sahin,&nbsp;Nathan W. Wilson,&nbsp;Kayleigh Millerick,&nbsp;Amy Hardberger,&nbsp;Ariel L. Furst,&nbsp;Nicole Hu and Andrew J. Medford,&nbsp;","doi":"10.1021/acsomega.4c0792610.1021/acsomega.4c07926","DOIUrl":null,"url":null,"abstract":"<p >Efforts addressing sludge management, food security, and resource recovery have led to novel approaches in these areas. Electrically assisted conversion of sludge stands out as a promising technology for sewage sludge valorization, producing nitrogen and phosphorus-based fertilizers. The adoption of this technology, which could lead to a fertilizer circular economy, holds the potential to catalyze a transformative change in wastewater treatment facilities toward process intensification, innovation, and sustainability. This paper provides insights into the economic aspects of the technology, policy considerations, and challenges involved in realizing the potential of electrified processes for sludge valorization. To demonstrate the impact of the technology, a case study for its implementation in the United States assuming the municipal wastewater treatment plants market is discussed. It was found that electrically assisted sludge conversion could enable the recovery of nitrogen and phosphorus from waste, representing up to 9% of the nitrogen and 32% of the phosphorus consumption of the U.S. for fertilizer use. This technology also enables full electrification and modularization of the process, thereby presenting significant economic and environmental opportunities.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 50","pages":"49692–49706 49692–49706"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c07926","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c07926","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efforts addressing sludge management, food security, and resource recovery have led to novel approaches in these areas. Electrically assisted conversion of sludge stands out as a promising technology for sewage sludge valorization, producing nitrogen and phosphorus-based fertilizers. The adoption of this technology, which could lead to a fertilizer circular economy, holds the potential to catalyze a transformative change in wastewater treatment facilities toward process intensification, innovation, and sustainability. This paper provides insights into the economic aspects of the technology, policy considerations, and challenges involved in realizing the potential of electrified processes for sludge valorization. To demonstrate the impact of the technology, a case study for its implementation in the United States assuming the municipal wastewater treatment plants market is discussed. It was found that electrically assisted sludge conversion could enable the recovery of nitrogen and phosphorus from waste, representing up to 9% of the nitrogen and 32% of the phosphorus consumption of the U.S. for fertilizer use. This technology also enables full electrification and modularization of the process, thereby presenting significant economic and environmental opportunities.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信