Ultrafast Carrier Diffusion in Perovskite Monocrystalline Films

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Xiayuan Xu, Yan Chen, Yijie Luo, Yuxin Zhang, Yiqun Duan, Yaobin Li, Guanyu Zhang, Zhijian Chen, Shufeng Wang* and Guowei Lu*, 
{"title":"Ultrafast Carrier Diffusion in Perovskite Monocrystalline Films","authors":"Xiayuan Xu,&nbsp;Yan Chen,&nbsp;Yijie Luo,&nbsp;Yuxin Zhang,&nbsp;Yiqun Duan,&nbsp;Yaobin Li,&nbsp;Guanyu Zhang,&nbsp;Zhijian Chen,&nbsp;Shufeng Wang* and Guowei Lu*,&nbsp;","doi":"10.1021/acs.jpclett.4c0306310.1021/acs.jpclett.4c03063","DOIUrl":null,"url":null,"abstract":"<p >Monocrystalline perovskite materials exhibit superior properties compared with polycrystalline perovskites, including lower defect density, minimal grain boundaries, and enhanced carrier mobility. Nevertheless, the preparation of large-area, high-quality single-crystal films, which could prove invaluable for photoelectronic applications, remains a significant challenge. The study of how their unique properties go beyond polycrystalline thin films is still missing. In our experiment, using polarization-selective transient absorption microscopy, we directly observed the spatial carrier transportation in methylammonium lead iodide (CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, MAPbI<sub>3</sub>) strip-shaped monocrystalline ultrathin films. Ultrafast carrier diffusion transportation was observed. The monocrystalline carrier diffusion coefficient <i>D</i> (∼22 cm<sup>2</sup> s<sup>–1</sup>) is an order of magnitude higher than that in polycrystalline films. Anisotropic carrier diffusion of the MAPbI<sub>3</sub> single crystal has been discovered. It is also discovered that the electrons and holes are of different anisotropy and diffusion speed. This ultralong carrier transport inside the monocrystalline film provides solid support for the development of perovskite based photoelectronic devices.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 50","pages":"12318–12325 12318–12325"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03063","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Monocrystalline perovskite materials exhibit superior properties compared with polycrystalline perovskites, including lower defect density, minimal grain boundaries, and enhanced carrier mobility. Nevertheless, the preparation of large-area, high-quality single-crystal films, which could prove invaluable for photoelectronic applications, remains a significant challenge. The study of how their unique properties go beyond polycrystalline thin films is still missing. In our experiment, using polarization-selective transient absorption microscopy, we directly observed the spatial carrier transportation in methylammonium lead iodide (CH3NH3PbI3, MAPbI3) strip-shaped monocrystalline ultrathin films. Ultrafast carrier diffusion transportation was observed. The monocrystalline carrier diffusion coefficient D (∼22 cm2 s–1) is an order of magnitude higher than that in polycrystalline films. Anisotropic carrier diffusion of the MAPbI3 single crystal has been discovered. It is also discovered that the electrons and holes are of different anisotropy and diffusion speed. This ultralong carrier transport inside the monocrystalline film provides solid support for the development of perovskite based photoelectronic devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信