{"title":"Ultrafast Carrier Diffusion in Perovskite Monocrystalline Films","authors":"Xiayuan Xu, Yan Chen, Yijie Luo, Yuxin Zhang, Yiqun Duan, Yaobin Li, Guanyu Zhang, Zhijian Chen, Shufeng Wang* and Guowei Lu*, ","doi":"10.1021/acs.jpclett.4c0306310.1021/acs.jpclett.4c03063","DOIUrl":null,"url":null,"abstract":"<p >Monocrystalline perovskite materials exhibit superior properties compared with polycrystalline perovskites, including lower defect density, minimal grain boundaries, and enhanced carrier mobility. Nevertheless, the preparation of large-area, high-quality single-crystal films, which could prove invaluable for photoelectronic applications, remains a significant challenge. The study of how their unique properties go beyond polycrystalline thin films is still missing. In our experiment, using polarization-selective transient absorption microscopy, we directly observed the spatial carrier transportation in methylammonium lead iodide (CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub>, MAPbI<sub>3</sub>) strip-shaped monocrystalline ultrathin films. Ultrafast carrier diffusion transportation was observed. The monocrystalline carrier diffusion coefficient <i>D</i> (∼22 cm<sup>2</sup> s<sup>–1</sup>) is an order of magnitude higher than that in polycrystalline films. Anisotropic carrier diffusion of the MAPbI<sub>3</sub> single crystal has been discovered. It is also discovered that the electrons and holes are of different anisotropy and diffusion speed. This ultralong carrier transport inside the monocrystalline film provides solid support for the development of perovskite based photoelectronic devices.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"15 50","pages":"12318–12325 12318–12325"},"PeriodicalIF":4.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.4c03063","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Monocrystalline perovskite materials exhibit superior properties compared with polycrystalline perovskites, including lower defect density, minimal grain boundaries, and enhanced carrier mobility. Nevertheless, the preparation of large-area, high-quality single-crystal films, which could prove invaluable for photoelectronic applications, remains a significant challenge. The study of how their unique properties go beyond polycrystalline thin films is still missing. In our experiment, using polarization-selective transient absorption microscopy, we directly observed the spatial carrier transportation in methylammonium lead iodide (CH3NH3PbI3, MAPbI3) strip-shaped monocrystalline ultrathin films. Ultrafast carrier diffusion transportation was observed. The monocrystalline carrier diffusion coefficient D (∼22 cm2 s–1) is an order of magnitude higher than that in polycrystalline films. Anisotropic carrier diffusion of the MAPbI3 single crystal has been discovered. It is also discovered that the electrons and holes are of different anisotropy and diffusion speed. This ultralong carrier transport inside the monocrystalline film provides solid support for the development of perovskite based photoelectronic devices.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.