Study on the Effect and Mechanism of Support and Deposition-Precipitation Method on Ru-Based Catalysts for Ammonia Decomposition

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Bin Guan*, Junyan Chen, Zhongqi Zhuang, Lei Zhu, Zeren Ma, Xuehan Hu, Chenyu Zhu, Sikai Zhao, Kaiyou Shu, Hongtao Dang, Junjie Gao, Luyang Zhang, Tiankui Zhu and Zhen Huang, 
{"title":"Study on the Effect and Mechanism of Support and Deposition-Precipitation Method on Ru-Based Catalysts for Ammonia Decomposition","authors":"Bin Guan*,&nbsp;Junyan Chen,&nbsp;Zhongqi Zhuang,&nbsp;Lei Zhu,&nbsp;Zeren Ma,&nbsp;Xuehan Hu,&nbsp;Chenyu Zhu,&nbsp;Sikai Zhao,&nbsp;Kaiyou Shu,&nbsp;Hongtao Dang,&nbsp;Junjie Gao,&nbsp;Luyang Zhang,&nbsp;Tiankui Zhu and Zhen Huang,&nbsp;","doi":"10.1021/acs.iecr.4c0383810.1021/acs.iecr.4c03838","DOIUrl":null,"url":null,"abstract":"<p >Herein, the effects of support and the deposition-precipitation method on the Ru-based catalysts for NH<sub>3</sub> decomposition were studied. The results of the performance test, characterization, and DFT simulation show that the activity order of the catalysts with different supports is 5% Ru/MgO &gt; 5% Ru/Al<sub>2</sub>O<sub>3</sub> &gt; 5% Ru/Pr<sub>2</sub>O<sub>3</sub> &gt; 5% Ru/La<sub>2</sub>O<sub>3</sub>. Ru/MgO exhibits the best ammonia decomposition performance (<i>T</i><sub>80</sub> ≈ 480 °C), because its suitable pore structure is conducive to ammonia adsorption, and abundant strong alkaline sites produce a strong metal–support interaction. The ammonia decomposition performance of 5% Ru/MgO (DP) prepared by the deposition-precipitation method is much higher than that of 5% Ru/MgO (IM) prepared by the impregnation method (<i>T</i><sub>80</sub> decreases from 480 to 440 °C). On Ru/MgO (DP), the distribution of Ru particles is more uniform and the particle size is relatively consistent, and the Ru/MgO (DP) has more basic sites and a more reasonable ratio of lattice oxygen to defect oxygen. Calculated by DFT, the energy barrier of the first dehydrogenation of NH<sub>3</sub> and the combined desorption of N is 1.31 and 1.51 eV, respectively, and the latter is the rate-determining step of the ammonia decomposition reaction in Ru/MgO.</p>","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"63 50","pages":"21875–21889 21875–21889"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.iecr.4c03838","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, the effects of support and the deposition-precipitation method on the Ru-based catalysts for NH3 decomposition were studied. The results of the performance test, characterization, and DFT simulation show that the activity order of the catalysts with different supports is 5% Ru/MgO > 5% Ru/Al2O3 > 5% Ru/Pr2O3 > 5% Ru/La2O3. Ru/MgO exhibits the best ammonia decomposition performance (T80 ≈ 480 °C), because its suitable pore structure is conducive to ammonia adsorption, and abundant strong alkaline sites produce a strong metal–support interaction. The ammonia decomposition performance of 5% Ru/MgO (DP) prepared by the deposition-precipitation method is much higher than that of 5% Ru/MgO (IM) prepared by the impregnation method (T80 decreases from 480 to 440 °C). On Ru/MgO (DP), the distribution of Ru particles is more uniform and the particle size is relatively consistent, and the Ru/MgO (DP) has more basic sites and a more reasonable ratio of lattice oxygen to defect oxygen. Calculated by DFT, the energy barrier of the first dehydrogenation of NH3 and the combined desorption of N is 1.31 and 1.51 eV, respectively, and the latter is the rate-determining step of the ammonia decomposition reaction in Ru/MgO.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信