Gold Nanocluster–Molybdenum Disulfide Nanosheet Couple-Based Immunoassay Probe for the Selective Detection of Glial Fibrillary Acidic Protein (GFAP)─A Biomarker for Ischemic Stroke
IF 5.3 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Susan Varghese, Anju S. Madanan, Merin K. Abraham, Ali Ibrahim Shkhair, Geneva Indongo, Greeshma Rajeevan, Arathy B. K. Kala and Sony George*,
{"title":"Gold Nanocluster–Molybdenum Disulfide Nanosheet Couple-Based Immunoassay Probe for the Selective Detection of Glial Fibrillary Acidic Protein (GFAP)─A Biomarker for Ischemic Stroke","authors":"Susan Varghese, Anju S. Madanan, Merin K. Abraham, Ali Ibrahim Shkhair, Geneva Indongo, Greeshma Rajeevan, Arathy B. K. Kala and Sony George*, ","doi":"10.1021/acsanm.4c0560710.1021/acsanm.4c05607","DOIUrl":null,"url":null,"abstract":"<p >Stroke, an incapacitating cerebrovascular catastrophe, imposes significant socio-economic burdens by affecting individuals, families, and society at large. Ischemic stroke (IS) particularly disrupts the cerebral blood flow, causing vascular compromise and neurological impairment. The present study introduces a fluorescence immunoassay platform for detecting glial fibrillary acidic protein (GFAP), a critical marker responsive to IS. Employing molybdenum disulfide nanosheet (MoS<sub>2</sub> NS) as a quencher upon GFAP antibody-conjugated bovine serum albumin-capped fluorescent gold nanoclusters (MoS<sub>2</sub>@Ab@AuNCs), the developed assay demonstrates robust detection capabilities. The platform exhibits a linear detection range from 31.15 to 447.76 pg/mL with a detection limit of 1.30 pg/mL. Selectivity and sensitivity assessments against coexisting biomolecules and ions validate the reliability of the probe. Furthermore, feasibility studies using real serum samples confirm its applicability in clinical settings. Additionally, a paper strip-based, cost-effective platform is introduced for rapid GFAP detection, facilitating broader accessibility and utility.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"7 23","pages":"27579–27590 27579–27590"},"PeriodicalIF":5.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c05607","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke, an incapacitating cerebrovascular catastrophe, imposes significant socio-economic burdens by affecting individuals, families, and society at large. Ischemic stroke (IS) particularly disrupts the cerebral blood flow, causing vascular compromise and neurological impairment. The present study introduces a fluorescence immunoassay platform for detecting glial fibrillary acidic protein (GFAP), a critical marker responsive to IS. Employing molybdenum disulfide nanosheet (MoS2 NS) as a quencher upon GFAP antibody-conjugated bovine serum albumin-capped fluorescent gold nanoclusters (MoS2@Ab@AuNCs), the developed assay demonstrates robust detection capabilities. The platform exhibits a linear detection range from 31.15 to 447.76 pg/mL with a detection limit of 1.30 pg/mL. Selectivity and sensitivity assessments against coexisting biomolecules and ions validate the reliability of the probe. Furthermore, feasibility studies using real serum samples confirm its applicability in clinical settings. Additionally, a paper strip-based, cost-effective platform is introduced for rapid GFAP detection, facilitating broader accessibility and utility.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.