Felipe Zapata*, Daniele Toffoli, Jan Marcus Dahlström, Eva Lindroth, Piero Decleva and Fernando Martín,
{"title":"B-Spline Solution of the Two-Center Dirac Equation in the Electronic Continuum for Relativistic Molecular Photoionization","authors":"Felipe Zapata*, Daniele Toffoli, Jan Marcus Dahlström, Eva Lindroth, Piero Decleva and Fernando Martín, ","doi":"10.1021/acs.jctc.4c0123210.1021/acs.jctc.4c01232","DOIUrl":null,"url":null,"abstract":"<p >In this work, the two-center Dirac equation is solved numerically using an extension of an adapted B-spline basis set method previously implemented in relativistic atomic calculations (Fischer, C. F.; Zatsarinny, O. <i>Comput. Phys. Commun.</i> <b>2009</b>, <i>180</i>, 879). The robustness of the chosen numerical method, which avoids the appearance of spurious states common in other approaches, allows us to investigate molecular photoionization within a relativistic framework by simply adapting those methods already available in the nonrelativistic case (Brosolo, M.; Decleva, P. <i>Chem. Phys.</i> <b>1992</b>, <i>159</i>, 185; Brosolo, M.; Decleva, P.; Lisini, A. <i>Mol. Opt. Phys.</i> <b>1992</b>, <i>25</i>, 3345). First, light diatomic molecules (i.e., H<sub>2</sub><sup>+</sup> and HeH<sup>2+</sup>) are investigated with the purpose of testing the validity and efficiency of the method. Then, a series of one-electron molecular hydrides (i.e., HF<sup>9+</sup>, HCl<sup>17+</sup> and HI<sup>53+</sup>) is explored by computing the total photoionization cross sections, asymmetry β-parameters and partial phase shifts. The present methodology can be easily extended to treat <i>N</i>-electron molecules following previous approaches in nonrelativistic calculations (Plesiat, E.; Decleva, P.; Martin, F. <i>Phys. Chem. Chem. Phys.</i> <b>2012</b>, <i>14</i>, 10853). The inclusion of a second photon can be also accomplished just like in atomic investigations aiming at reproducing pump–probe experiments capable to extract the photoionization time-delays (Vinbladh, J.; Dahlstrom, J. M.; Lindroth, E. <i>Phys. Rev A</i> <b>2019</b>, <i>100</i>, 043424; Vinblach, J.; Dahlstrom, J. M.; Lindroth, E. <i>Atoms</i> <b>2022</b>, <i>10</i>, 80).</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":"20 23","pages":"10507–10523 10507–10523"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jctc.4c01232","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the two-center Dirac equation is solved numerically using an extension of an adapted B-spline basis set method previously implemented in relativistic atomic calculations (Fischer, C. F.; Zatsarinny, O. Comput. Phys. Commun.2009, 180, 879). The robustness of the chosen numerical method, which avoids the appearance of spurious states common in other approaches, allows us to investigate molecular photoionization within a relativistic framework by simply adapting those methods already available in the nonrelativistic case (Brosolo, M.; Decleva, P. Chem. Phys.1992, 159, 185; Brosolo, M.; Decleva, P.; Lisini, A. Mol. Opt. Phys.1992, 25, 3345). First, light diatomic molecules (i.e., H2+ and HeH2+) are investigated with the purpose of testing the validity and efficiency of the method. Then, a series of one-electron molecular hydrides (i.e., HF9+, HCl17+ and HI53+) is explored by computing the total photoionization cross sections, asymmetry β-parameters and partial phase shifts. The present methodology can be easily extended to treat N-electron molecules following previous approaches in nonrelativistic calculations (Plesiat, E.; Decleva, P.; Martin, F. Phys. Chem. Chem. Phys.2012, 14, 10853). The inclusion of a second photon can be also accomplished just like in atomic investigations aiming at reproducing pump–probe experiments capable to extract the photoionization time-delays (Vinbladh, J.; Dahlstrom, J. M.; Lindroth, E. Phys. Rev A2019, 100, 043424; Vinblach, J.; Dahlstrom, J. M.; Lindroth, E. Atoms2022, 10, 80).
在这项工作中,我们使用先前在相对论原子计算中实施的改编 B 样条基集方法的扩展,对双中心狄拉克方程进行了数值求解(Fischer, C. F.; Zatsarinny, O. Comput. Phys. Commun. 2009, 180, 879)。所选数值方法的稳健性避免了其他方法中常见的假态的出现,使我们能够在相对论框架内研究分子光电离,只需调整那些在非相对论情况下已经可用的方法即可(Brosolo, M.; Decleva, P. Chem.1992, 159, 185; Brosolo, M.; Decleva, P.; Lisini, A. Mol.光学。1992,25,3345)。首先,研究了轻质二原子分子(即 H2+ 和 HeH2+),目的是测试该方法的有效性和效率。然后,通过计算总光电离截面、不对称 β 参数和部分相移,研究了一系列单电子分子氢化物(即 HF9+、HCl17+ 和 HI53+)。按照以前的非相对论计算方法(Plesiat, E.; Decleva, P.; Martin, F. Phys.Chem.2012, 14, 10853)。在原子研究中也可以加入第二个光子,目的是重现能够提取光离子化时滞的泵探实验(Vinbladh, J.; Dahlstrom, J. M.; Lindroth, E. Phys. Rev A 2019, 100, 043424; Vinblach, J.; Dahlstrom, J. M.; Lindroth, E. Atoms 2022, 10, 80)。
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.