Deep representation learning of protein-protein interaction networks for enhanced pattern discovery

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Rui Yan, Md Tauhidul Islam, Lei Xing
{"title":"Deep representation learning of protein-protein interaction networks for enhanced pattern discovery","authors":"Rui Yan, Md Tauhidul Islam, Lei Xing","doi":"10.1126/sciadv.adq4324","DOIUrl":null,"url":null,"abstract":"Protein-protein interaction (PPI) networks, where nodes represent proteins and edges depict myriad interactions among them, are fundamental to understanding the dynamics within biological systems. Despite their pivotal role in modern biology, reliably discerning patterns from these intertwined networks remains a substantial challenge. The essence of the challenge lies in holistically characterizing the relationships of each node with others in the network and effectively using this information for accurate pattern discovery. In this work, we introduce a self-supervised network embedding framework termed discriminative network embedding (DNE). Unlike conventional methods that primarily focus on direct or limited-order node proximity, DNE characterizes a node both locally and globally by harnessing the contrast between representations from neighboring and distant nodes. Our experimental results demonstrate DNE’s superior performance over existing techniques across various critical network analyses, including PPI inference and the identification of protein functional modules. DNE emerges as a robust strategy for node representation in PPI networks, offering promising avenues for diverse biomedical applications.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"145 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adq4324","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Protein-protein interaction (PPI) networks, where nodes represent proteins and edges depict myriad interactions among them, are fundamental to understanding the dynamics within biological systems. Despite their pivotal role in modern biology, reliably discerning patterns from these intertwined networks remains a substantial challenge. The essence of the challenge lies in holistically characterizing the relationships of each node with others in the network and effectively using this information for accurate pattern discovery. In this work, we introduce a self-supervised network embedding framework termed discriminative network embedding (DNE). Unlike conventional methods that primarily focus on direct or limited-order node proximity, DNE characterizes a node both locally and globally by harnessing the contrast between representations from neighboring and distant nodes. Our experimental results demonstrate DNE’s superior performance over existing techniques across various critical network analyses, including PPI inference and the identification of protein functional modules. DNE emerges as a robust strategy for node representation in PPI networks, offering promising avenues for diverse biomedical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信