{"title":"The Effect of Pseudo-Global Warming on the Weather-Climate System of Africa in a Convection-Permitting Model","authors":"K. M. Núñez Ocasio, Erin M. Dougherty","doi":"10.1029/2024gl112341","DOIUrl":null,"url":null,"abstract":"The African easterly jet (AEJ) and the West African Monsoon (WAM) can largely modulate high-impact weather over Africa and the tropical Atlantic. How these features will change with a warming climate is just starting to be addressed due to global climate model limitations in resolving convection. We employ a novel regional setup for an atmospheric convection-permitting model alongside the pseudo-global warming (PGW) approach to address climate change impacts on the weather-climate system of Africa during a short period of high-impact weather. Our findings indicate that the AEJ and WAM may intensify in a future warming climate scenario. Precipitation is shown to increase over Guinea Highlands and Cameroon Mountains and shift southward due to a latitudinal expansion and increase of deep convection closer to the equator. This has relevant ramifications for the livelihood of communities that depend on water-fed crops in tropical Africa.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"48 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl112341","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The African easterly jet (AEJ) and the West African Monsoon (WAM) can largely modulate high-impact weather over Africa and the tropical Atlantic. How these features will change with a warming climate is just starting to be addressed due to global climate model limitations in resolving convection. We employ a novel regional setup for an atmospheric convection-permitting model alongside the pseudo-global warming (PGW) approach to address climate change impacts on the weather-climate system of Africa during a short period of high-impact weather. Our findings indicate that the AEJ and WAM may intensify in a future warming climate scenario. Precipitation is shown to increase over Guinea Highlands and Cameroon Mountains and shift southward due to a latitudinal expansion and increase of deep convection closer to the equator. This has relevant ramifications for the livelihood of communities that depend on water-fed crops in tropical Africa.
期刊介绍:
Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.