Climate Change-Driven Long-Term Stability Risks of Ubiquitous Moraine Dams in Glacial Lakes on Qinghai-Tibet Plateau: A Multiphysics Coupling Evolution Perspective

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Jia-Qing Zhou, Qi-Long Li, Yi-Feng Chen, Changdong Li, Jiu Jimmy Jiao, Huiming Tang
{"title":"Climate Change-Driven Long-Term Stability Risks of Ubiquitous Moraine Dams in Glacial Lakes on Qinghai-Tibet Plateau: A Multiphysics Coupling Evolution Perspective","authors":"Jia-Qing Zhou, Qi-Long Li, Yi-Feng Chen, Changdong Li, Jiu Jimmy Jiao, Huiming Tang","doi":"10.1029/2024gl109350","DOIUrl":null,"url":null,"abstract":"Glacial lake-moraine dam systems are widespread in cold alpine environments such as the Qinghai-Tibet Plateau (QTP). Without climate change, the lake-dam system exhibits stably dynamic evolution on a hydrological annual cycle. However, climate change may drive subtle alterations in the system's evolution. We developed a fully coupled Thermal-Hydraulic-Mechanical simulation platform considering ice-water phase change, showing robust performance under CMIP6-derived boundary conditions. Using this platform, we simulated climate warming-driven multiphysics responses and dam stability evolutions of a homogeneous, simplified conceptual model of the lake-dam system. We identified critical temperature thresholds for permanently frozen area thawing and abrupt changes in dam stability of this lake-dam system. Considering the current slope stability situations on the QTP, the SSP 5–8.5 climate warming scenario is conservatively anticipated to pose significant geological safety risks due to potential disaster chains from glacial lake failures. Our study provides insights into profound geological process evolutions driven by climate change.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"79 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl109350","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Glacial lake-moraine dam systems are widespread in cold alpine environments such as the Qinghai-Tibet Plateau (QTP). Without climate change, the lake-dam system exhibits stably dynamic evolution on a hydrological annual cycle. However, climate change may drive subtle alterations in the system's evolution. We developed a fully coupled Thermal-Hydraulic-Mechanical simulation platform considering ice-water phase change, showing robust performance under CMIP6-derived boundary conditions. Using this platform, we simulated climate warming-driven multiphysics responses and dam stability evolutions of a homogeneous, simplified conceptual model of the lake-dam system. We identified critical temperature thresholds for permanently frozen area thawing and abrupt changes in dam stability of this lake-dam system. Considering the current slope stability situations on the QTP, the SSP 5–8.5 climate warming scenario is conservatively anticipated to pose significant geological safety risks due to potential disaster chains from glacial lake failures. Our study provides insights into profound geological process evolutions driven by climate change.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信