{"title":"Adaptive Phase-Locked E-Skin for Sports Physiology and Medicine","authors":"Qiankun Zeng, Guoyue Shi, Jing Tang, Min Zhang","doi":"10.1002/smll.202407143","DOIUrl":null,"url":null,"abstract":"The pursuit of creating materials that replicate the flexibility, stability, and advanced perceptual capabilities of human skin, attributes honed through natural evolution, represents a long-term objective in pioneering fields such as electronic skin (e-skin) research. However, conventional e-skin often struggles with stability and functionality in harsh sports environments, resulting in the degradation of the intimate interface over time. Inspired by the innate biphasic structure of human subcutaneous tissue, an adaptive phase-locked e-skin (APLE) is presented, designed to seamlessly conform to dynamic sports environments, offering robust applications in sports physiology and medical contexts without malfunctioning. The APLE allows one to laminate onto the skin with consistent homeostasis, providing a foundation for advancing data-driven sports physiology and creating personalized sports plans. Additionally, APLE offers immediate on-site medical treatment for common sports injuries, including hemostasis and sutureless wound closure. Ultimately, the reported multifunctional e-skin can provide significant value in managing sport-related burdens through digital and people-centered physiology monitoring, along with real-time sport healthcare.","PeriodicalId":228,"journal":{"name":"Small","volume":"55 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407143","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The pursuit of creating materials that replicate the flexibility, stability, and advanced perceptual capabilities of human skin, attributes honed through natural evolution, represents a long-term objective in pioneering fields such as electronic skin (e-skin) research. However, conventional e-skin often struggles with stability and functionality in harsh sports environments, resulting in the degradation of the intimate interface over time. Inspired by the innate biphasic structure of human subcutaneous tissue, an adaptive phase-locked e-skin (APLE) is presented, designed to seamlessly conform to dynamic sports environments, offering robust applications in sports physiology and medical contexts without malfunctioning. The APLE allows one to laminate onto the skin with consistent homeostasis, providing a foundation for advancing data-driven sports physiology and creating personalized sports plans. Additionally, APLE offers immediate on-site medical treatment for common sports injuries, including hemostasis and sutureless wound closure. Ultimately, the reported multifunctional e-skin can provide significant value in managing sport-related burdens through digital and people-centered physiology monitoring, along with real-time sport healthcare.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.