Lorenzo Stasi, Towsif Taher, Giovanni V. Resta, Hugo Zbinden, Rob Thew, Félix Bussières
{"title":"Enhanced Detection Rate and High Photon-Number Efficiencies with a Scalable Parallel SNSPD","authors":"Lorenzo Stasi, Towsif Taher, Giovanni V. Resta, Hugo Zbinden, Rob Thew, Félix Bussières","doi":"10.1021/acsphotonics.4c01680","DOIUrl":null,"url":null,"abstract":"Since their inception, superconducting nanowire single-photon detectors have been enabling quantum optical applications and the rise of the photonic quantum industry. The evolution in the detector design and read-out strategies has led to the introduction of devices with a plurality of independent pixels, which have been able to operate with high system detection efficiency at high speed while also supporting photon number resolution capabilities. However, this comes at the cost of a complex readout that requires one coaxial cable for each pixel of the array. Here, we report a 28-pixel SNSPD with a dedicated parallel architecture that, while maintaining a simple readout with a single coaxial line, enables the detector to operate at high speed with low-performance degradation. The device shows a maximum single-photon efficiency of 88% and is able to maintain its efficiency above 50%, coupled with a timing jitter lower than 80 ps, up to a detection rate of 200 million counts per second. The detector also provides state-of-the-art photon-number-resolving performances with a 2-photon efficiency of 75% and a 3-photon efficiency of 62%.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"256 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01680","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Since their inception, superconducting nanowire single-photon detectors have been enabling quantum optical applications and the rise of the photonic quantum industry. The evolution in the detector design and read-out strategies has led to the introduction of devices with a plurality of independent pixels, which have been able to operate with high system detection efficiency at high speed while also supporting photon number resolution capabilities. However, this comes at the cost of a complex readout that requires one coaxial cable for each pixel of the array. Here, we report a 28-pixel SNSPD with a dedicated parallel architecture that, while maintaining a simple readout with a single coaxial line, enables the detector to operate at high speed with low-performance degradation. The device shows a maximum single-photon efficiency of 88% and is able to maintain its efficiency above 50%, coupled with a timing jitter lower than 80 ps, up to a detection rate of 200 million counts per second. The detector also provides state-of-the-art photon-number-resolving performances with a 2-photon efficiency of 75% and a 3-photon efficiency of 62%.
期刊介绍:
Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.