Unravelling the in vivo biotoxicity of green-biofabricated Graphene Oxide-Microplastic hybrid mediated by proximal intrinsic atomic interaction

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Adrija Sinha, Sudakshya S. Lenka, Abha Gupta, Dibyangshee Singh, Anmol Choudhury, Shaikh Sheeran Naser, Aishee Ghosh, Faizan Zarreen Simnani, Aditya Nandi, Suresh K Verma, Mrutyunjay Suar, Richa Mishra
{"title":"Unravelling the in vivo biotoxicity of green-biofabricated Graphene Oxide-Microplastic hybrid mediated by proximal intrinsic atomic interaction","authors":"Adrija Sinha, Sudakshya S. Lenka, Abha Gupta, Dibyangshee Singh, Anmol Choudhury, Shaikh Sheeran Naser, Aishee Ghosh, Faizan Zarreen Simnani, Aditya Nandi, Suresh K Verma, Mrutyunjay Suar, Richa Mishra","doi":"10.1039/d4en00558a","DOIUrl":null,"url":null,"abstract":"Graphene Oxide (GO) nano-sheets have emerged as a potent nanomaterial for a range of applications like antibacterial, antibiofilm. Besides, Microplastic are emerging as a chronic pollutant originated from the aggrandized usage of plastics, for possessing serious repercussions to the living beings and the environment. In concern of the issue, the individual toxicological impacts of GO nano-sheets and Polystyrene (PS) have received substantial research, the mechanistic details and toxicological effects of GO and PS as a hybrid is yet unknown. This study evaluates the in vivo biotoxicity of a lab mimic green synthesized GO@PS hybrid using embryonic zebrafish through experimental and computational approach. The physiochemical characterzation of the GO@PS verified the synthesis of a stable 1433.0 ± 268.0 nm sized GO@PS hybrid with a zeta potential of -47.3 ± 5.7 mV. Mechanistic analysis deduced the toxicological impact as a cause of induced apoptosis due to dysregulated oxidative stress lead by the hypoxic condition created due to blockage of chorion by attachment and accumulation of GO@PS. The study depicted the in vivo toxicity of GO, PS and GO@PS at cellular and molecular level to draw attention for taking measures in usage of GO and PS in terms of environmental and human health.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"52 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00558a","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Graphene Oxide (GO) nano-sheets have emerged as a potent nanomaterial for a range of applications like antibacterial, antibiofilm. Besides, Microplastic are emerging as a chronic pollutant originated from the aggrandized usage of plastics, for possessing serious repercussions to the living beings and the environment. In concern of the issue, the individual toxicological impacts of GO nano-sheets and Polystyrene (PS) have received substantial research, the mechanistic details and toxicological effects of GO and PS as a hybrid is yet unknown. This study evaluates the in vivo biotoxicity of a lab mimic green synthesized GO@PS hybrid using embryonic zebrafish through experimental and computational approach. The physiochemical characterzation of the GO@PS verified the synthesis of a stable 1433.0 ± 268.0 nm sized GO@PS hybrid with a zeta potential of -47.3 ± 5.7 mV. Mechanistic analysis deduced the toxicological impact as a cause of induced apoptosis due to dysregulated oxidative stress lead by the hypoxic condition created due to blockage of chorion by attachment and accumulation of GO@PS. The study depicted the in vivo toxicity of GO, PS and GO@PS at cellular and molecular level to draw attention for taking measures in usage of GO and PS in terms of environmental and human health.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信