Aditya Prajapati, Alexandra Zagalskaya, Natalie Hwee, Jonathan T. Davis, Hui-Yun Jeong, Jennifer Moreno, Jenna Ynzunza, Sneha A. Akhade, Jeremy T. Feaster
{"title":"Decarbonizing nitrogen fertilizer production via the electrochemical nitrogen oxidation reaction","authors":"Aditya Prajapati, Alexandra Zagalskaya, Natalie Hwee, Jonathan T. Davis, Hui-Yun Jeong, Jennifer Moreno, Jenna Ynzunza, Sneha A. Akhade, Jeremy T. Feaster","doi":"10.1016/j.checat.2024.101220","DOIUrl":null,"url":null,"abstract":"Nitric acid is an important commodity chemical in agriculture and industry, yet its conventional production through the Haber-Bosch and Ostwald processes is energy and carbon-emission intensive. An electrochemical nitrogen oxidation reaction (NOR) to produce nitrates shows great potential as an environmentally friendly method of producing fertilizers under mild conditions. Progress in this field requires fundamental mechanistic understanding and establishing robust experimental methods, which is essential for the efficient design and synthesis of electrocatalysts for the NOR. We present a synergistic computational and experimental approach to exploring NOR pathways on a PtO<sub>2</sub> catalyst to gain mechanistic insights into the NOR. This study marks the first attempt to perform the NOR in a vapor-fed reactor designed through advanced (additive) manufacturing. The vapor-fed reactor significantly improved the N<sub>2</sub> mass transport to the catalyst, allowing us to report the highest rate for nitrate production to date at <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mn is=\"true\">3.3</mn><mspace width=\"0.25em\" is=\"true\" /><mi is=\"true\">&#x3BC;</mi><mtext is=\"true\">mol</mtext><mspace width=\"0.25em\" is=\"true\" /><mi mathvariant=\"normal\" is=\"true\">c</mi><msup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">m</mi><mrow is=\"true\"><mo is=\"true\">&#x2212;</mo><mn is=\"true\">2</mn></mrow></msup><msup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">h</mi><mrow is=\"true\"><mo is=\"true\">&#x2212;</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -896.2 7838.8 1196.3\" width=\"18.206ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-33\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-33\" y=\"0\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(1529,0)\"><use xlink:href=\"#MJMATHI-3BC\"></use></g><g is=\"true\" transform=\"translate(2133,0)\"><use xlink:href=\"#MJMAIN-6D\"></use><use x=\"833\" xlink:href=\"#MJMAIN-6F\" y=\"0\"></use><use x=\"1334\" xlink:href=\"#MJMAIN-6C\" y=\"0\"></use></g><g is=\"true\"></g><g is=\"true\" transform=\"translate(3995,0)\"><use xlink:href=\"#MJMAIN-63\"></use></g><g is=\"true\" transform=\"translate(4440,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-6D\"></use></g><g is=\"true\" transform=\"translate(833,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(550,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g></g><g is=\"true\" transform=\"translate(6277,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-68\"></use></g><g is=\"true\" transform=\"translate(556,362)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(550,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-31\"></use></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mn is=\"true\">3.3</mn><mspace is=\"true\" width=\"0.25em\"></mspace><mi is=\"true\">μ</mi><mtext is=\"true\">mol</mtext><mspace is=\"true\" width=\"0.25em\"></mspace><mi is=\"true\" mathvariant=\"normal\">c</mi><msup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">m</mi><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">2</mn></mrow></msup><msup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">h</mi><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mn is=\"true\">3.3</mn><mspace width=\"0.25em\" is=\"true\"></mspace><mi is=\"true\">μ</mi><mtext is=\"true\">mol</mtext><mspace width=\"0.25em\" is=\"true\"></mspace><mi mathvariant=\"normal\" is=\"true\">c</mi><msup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">m</mi><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">2</mn></mrow></msup><msup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">h</mi><mrow is=\"true\"><mo is=\"true\">−</mo><mn is=\"true\">1</mn></mrow></msup></mrow></math></script></span> at 2.01 V vs. reversible hydrogen electrode (RHE).","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"18 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Nitric acid is an important commodity chemical in agriculture and industry, yet its conventional production through the Haber-Bosch and Ostwald processes is energy and carbon-emission intensive. An electrochemical nitrogen oxidation reaction (NOR) to produce nitrates shows great potential as an environmentally friendly method of producing fertilizers under mild conditions. Progress in this field requires fundamental mechanistic understanding and establishing robust experimental methods, which is essential for the efficient design and synthesis of electrocatalysts for the NOR. We present a synergistic computational and experimental approach to exploring NOR pathways on a PtO2 catalyst to gain mechanistic insights into the NOR. This study marks the first attempt to perform the NOR in a vapor-fed reactor designed through advanced (additive) manufacturing. The vapor-fed reactor significantly improved the N2 mass transport to the catalyst, allowing us to report the highest rate for nitrate production to date at at 2.01 V vs. reversible hydrogen electrode (RHE).
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.