Jing Li, Meng Zhang, Yueyue Wang, Wenxin Lv, Ziran Xu, Bibi Wang, Rongqin Huang, Bingbao Mei, Yi Wang
{"title":"Regulating the Atomic Active Center by Covalent Organic Framework-Derived Photothermal Nanozyme to Arm Self-Gelling Powder for Bacterial Wound Healing","authors":"Jing Li, Meng Zhang, Yueyue Wang, Wenxin Lv, Ziran Xu, Bibi Wang, Rongqin Huang, Bingbao Mei, Yi Wang","doi":"10.1021/acsnano.4c13899","DOIUrl":null,"url":null,"abstract":"Creating simple methods to produce antioxidant nanozymes with clear structure–activity relationships, particularly aiming to improve disinfection and create practical drug formulations for bacterial wound healing, remains a crucial challenge. Herein, we synthesized iron-loaded covalent organic framework nanospheres, which were then controllably transformed into a carbon-based nanozyme with both iron single atoms and iron clusters through simple pyrolysis. We discovered that the gradual growth of iron clusters significantly boosted the nanozyme’s adsorption onto the substrate and electron transfer, greatly influencing its activity. The nanozyme, optimized by the coexistence of single iron atoms and Fe<sub>4</sub> clusters, exhibited the strongest catalase and superoxide dismutase enzyme activities as well as high photothermal efficiency. Under physiological conditions, its peroxidase and oxidase enzymatic activities, which stimulate oxidative stress, remained low. Furthermore, we created an antibacterial self-gelling powder capable of dispersing the nanozyme using polyacrylamide and poly(acrylic acid). The powder can rapidly gel and adhere to wet wound areas, synergistically sterilizing the wound through the combined actions of the gel’s amino groups and the nanozyme’s photothermal effect, while leveraging the antioxidant enzymatic effects to mitigate wound inflammation. These properties contribute to the fast healing of infectious wounds, thus promising a clear formulation and treatment.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"228 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13899","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Creating simple methods to produce antioxidant nanozymes with clear structure–activity relationships, particularly aiming to improve disinfection and create practical drug formulations for bacterial wound healing, remains a crucial challenge. Herein, we synthesized iron-loaded covalent organic framework nanospheres, which were then controllably transformed into a carbon-based nanozyme with both iron single atoms and iron clusters through simple pyrolysis. We discovered that the gradual growth of iron clusters significantly boosted the nanozyme’s adsorption onto the substrate and electron transfer, greatly influencing its activity. The nanozyme, optimized by the coexistence of single iron atoms and Fe4 clusters, exhibited the strongest catalase and superoxide dismutase enzyme activities as well as high photothermal efficiency. Under physiological conditions, its peroxidase and oxidase enzymatic activities, which stimulate oxidative stress, remained low. Furthermore, we created an antibacterial self-gelling powder capable of dispersing the nanozyme using polyacrylamide and poly(acrylic acid). The powder can rapidly gel and adhere to wet wound areas, synergistically sterilizing the wound through the combined actions of the gel’s amino groups and the nanozyme’s photothermal effect, while leveraging the antioxidant enzymatic effects to mitigate wound inflammation. These properties contribute to the fast healing of infectious wounds, thus promising a clear formulation and treatment.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.