Electron-Beam-Induced Negative Differential Transconductance Homojunction Device Based on van der Waals Materials for Functionally Complete Ternary Computing
Maksim Andreev, Juncheol Kang, Taeran Lee, Jae-Woong Choi, Je-Jun Lee, Hyongsuk Choo, Sehee Lee, Jin-Hong Park
{"title":"Electron-Beam-Induced Negative Differential Transconductance Homojunction Device Based on van der Waals Materials for Functionally Complete Ternary Computing","authors":"Maksim Andreev, Juncheol Kang, Taeran Lee, Jae-Woong Choi, Je-Jun Lee, Hyongsuk Choo, Sehee Lee, Jin-Hong Park","doi":"10.1021/acsnano.4c11169","DOIUrl":null,"url":null,"abstract":"Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which remains unrealized with current NDT technologies, posing a critical limitation for higher-level circuit design. Additionally, NDT devices typically rely on heterojunctions, complicating fabrication and impacting reliability due to the introduction of additional materials and interfaces. Here, we utilize an electron beam to develop tungsten diselenide (WSe<sub>2</sub>) homojunction NDT devices with W-shaped current–voltage (<i>I</i>–<i>V</i>) characteristics. We demonstrate that electron beam enables the manipulation of Se atoms in WSe<sub>2</sub>, facilitating controllable and spatially precise tailoring of the WSe<sub>2</sub> work function. The electron-beam treatment applied to a part of the WSe<sub>2</sub> channel induces a lateral homojunction and ultimately results in the W-shaped <i>I</i>–<i>V</i> curves, which enable both one-input and two-input ternary logic gates. We propose and implement a balanced circuit design for two-input ternary NAND, AND, NOR, and OR gates, featuring a low device count, full-swing operation, and minimized output signal variations. Together with three types of ternary inverters also designed in this work, they form a functionally complete set of ternary logic gates─a prerequisite for practical ternary computing. This work addresses a critical gap in the development of NDT-based ternary computing by ensuring functional completeness and highlights the versatility of electron-beam treatment as an engineering tool for tailoring the properties of two-dimensional van der Waals materials.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"78 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11169","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which remains unrealized with current NDT technologies, posing a critical limitation for higher-level circuit design. Additionally, NDT devices typically rely on heterojunctions, complicating fabrication and impacting reliability due to the introduction of additional materials and interfaces. Here, we utilize an electron beam to develop tungsten diselenide (WSe2) homojunction NDT devices with W-shaped current–voltage (I–V) characteristics. We demonstrate that electron beam enables the manipulation of Se atoms in WSe2, facilitating controllable and spatially precise tailoring of the WSe2 work function. The electron-beam treatment applied to a part of the WSe2 channel induces a lateral homojunction and ultimately results in the W-shaped I–V curves, which enable both one-input and two-input ternary logic gates. We propose and implement a balanced circuit design for two-input ternary NAND, AND, NOR, and OR gates, featuring a low device count, full-swing operation, and minimized output signal variations. Together with three types of ternary inverters also designed in this work, they form a functionally complete set of ternary logic gates─a prerequisite for practical ternary computing. This work addresses a critical gap in the development of NDT-based ternary computing by ensuring functional completeness and highlights the versatility of electron-beam treatment as an engineering tool for tailoring the properties of two-dimensional van der Waals materials.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.