Malaka M. Wijayasinghe, Fiona R. Hay, Maria Tudela Isanta, Alma Balestrazzi, Louise Colville, Hugh W. Pritchard, Andrea Mondoni
{"title":"Radicle emergence could overestimate the prediction of seed longevity in wild plants","authors":"Malaka M. Wijayasinghe, Fiona R. Hay, Maria Tudela Isanta, Alma Balestrazzi, Louise Colville, Hugh W. Pritchard, Andrea Mondoni","doi":"10.1017/s0960258524000175","DOIUrl":null,"url":null,"abstract":"Seed longevity influences the success of <jats:italic>ex situ</jats:italic> storage and preservation of plant genetic diversity and is thus a critical factor in conservation efforts. Rapid seed ageing experiments at high temperature and high humidity have been widely used to classify seed longevity for hundreds of plant species, with potential implications for longevity in <jats:italic>ex situ</jats:italic> conservation. In this approach, radicle emergence (R) is normally used as a measure of the viability of the seeds. However, R could overestimate the level of normal seedling development and, consequently, the perceived longevity of seeds. Here, seed lifespan for 33 alpine species was compared to assess whether germination criteria could affect seed longevity parameters. Seeds were exposed to controlled ageing [45°C, 60% relative humidity (RH)] and regularly sampled for germination assessment as both radicle emergence (R) and radicle plus cotyledon emergence (R + C). The time taken in storage for viability to fall to 50% (<jats:italic>p</jats:italic><jats:sub>50</jats:sub>) was determined using probit analysis, including either R or R + C data. A coefficient of overestimation of seed longevity (OESL, %) was determined. The results highlight significant differences in seed longevity estimates both across species and the germination criteria. For 17 species, seed longevity estimated by R was significantly higher than that estimated using R + C, resulting in large variation in OESL (0.54–9.01 d). The introduction of OESL facilitates effective screening for seed longevity and recovery, enhancing the overall efficiency of conservation strategies for diverse species.","PeriodicalId":21711,"journal":{"name":"Seed Science Research","volume":"7 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seed Science Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/s0960258524000175","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Seed longevity influences the success of ex situ storage and preservation of plant genetic diversity and is thus a critical factor in conservation efforts. Rapid seed ageing experiments at high temperature and high humidity have been widely used to classify seed longevity for hundreds of plant species, with potential implications for longevity in ex situ conservation. In this approach, radicle emergence (R) is normally used as a measure of the viability of the seeds. However, R could overestimate the level of normal seedling development and, consequently, the perceived longevity of seeds. Here, seed lifespan for 33 alpine species was compared to assess whether germination criteria could affect seed longevity parameters. Seeds were exposed to controlled ageing [45°C, 60% relative humidity (RH)] and regularly sampled for germination assessment as both radicle emergence (R) and radicle plus cotyledon emergence (R + C). The time taken in storage for viability to fall to 50% (p50) was determined using probit analysis, including either R or R + C data. A coefficient of overestimation of seed longevity (OESL, %) was determined. The results highlight significant differences in seed longevity estimates both across species and the germination criteria. For 17 species, seed longevity estimated by R was significantly higher than that estimated using R + C, resulting in large variation in OESL (0.54–9.01 d). The introduction of OESL facilitates effective screening for seed longevity and recovery, enhancing the overall efficiency of conservation strategies for diverse species.
种子寿命影响着异地贮藏和植物遗传多样性保护的成败,因此是保护工作中的一个关键因素。高温高湿条件下的种子快速老化试验已被广泛用于对数百种植物种子的寿命进行分类,对异地保护中的寿命具有潜在影响。在这种方法中,通常使用胚根萌发率(R)来衡量种子的存活率。然而,胚根萌发率可能会高估正常幼苗的发育水平,从而高估种子的寿命。在此,我们对 33 种高山植物的种子寿命进行了比较,以评估萌发标准是否会影响种子寿命参数。对种子进行受控老化(45°C、60% 相对湿度),并定期取样进行发芽评估,包括胚根萌发(R)和胚根加子叶萌发(R + C)。使用 probit 分析法(包括 R 或 R + C 数据)确定存活率下降到 50%(p50)所需的储存时间。确定了种子寿命高估系数(OESL,%)。结果表明,不同物种和不同萌发标准的种子寿命估计值存在显著差异。在 17 个物种中,用 R 估算的种子寿命明显高于用 R + C 估算的种子寿命,导致 OESL 的巨大差异(0.54-9.01 d)。引入 OESL 有助于对种子寿命和恢复能力进行有效筛选,从而提高不同物种保护战略的整体效率。
期刊介绍:
Seed Science Research, the official journal of the International Society for Seed Science, is a leading international journal featuring high-quality original papers and review articles on the fundamental aspects of seed science, reviewed by internationally distinguished editors. The emphasis is on the physiology, biochemistry, molecular biology and ecology of seeds.