Molecular insights into transformation of dissolved organic matter in treating shale gas wastewater by the UV/H2O2-ultrafiltration-reverse osmosis combined process
Jingyu Shu, Peng Tang, Xuanyu Ji, Peng Liu, Guanyu Zhou, Zhiwei Gan, Jun Ma, Baicang Liu
{"title":"Molecular insights into transformation of dissolved organic matter in treating shale gas wastewater by the UV/H2O2-ultrafiltration-reverse osmosis combined process","authors":"Jingyu Shu, Peng Tang, Xuanyu Ji, Peng Liu, Guanyu Zhou, Zhiwei Gan, Jun Ma, Baicang Liu","doi":"10.1016/j.seppur.2024.131110","DOIUrl":null,"url":null,"abstract":"The integration of oxidation and membrane technologies demonstrates significant potential in shale gas wastewater (SGW) treatment. However, the molecular-level transformation mechanisms of the complex dissolved organic matter (DOM) in SGW during this coupled process remain unclear. This study systematically assessed the performance of UV/H<sub>2</sub>O<sub>2</sub>-ultrafiltration (UF)-reverse osmosis (RO) combined process in removing contaminations from SGW and used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to elucidate the transformation characteristics and mechanisms of DOM during treatment. At an optimal H<sub>2</sub>O<sub>2</sub> dosage (100 mg/L), UV/H<sub>2</sub>O<sub>2</sub> oxidation removed 16.76 % of UV<sub>254</sub> and 12.96 % of fluorescent dissolved organic matter, while achieving only 4.50 % removal of dissolved organic carbon, indicating that structural transformations of DOM were predominant over mineralization. FT-ICR MS analysis showed that UV/H<sub>2</sub>O<sub>2</sub> significantly increased DOM saturation and oxidation, effectively degrading highly aromatic compounds such as polyphenols and polycyclic aromatic hydrocarbons, with a preferential removal of reduced organic compounds. Mass difference analysis, based on 19 transformation reactions, identified dealkylation, oxygenation, dehydrogenation, dehydration, and decarboxylation as common reactions during UV/H<sub>2</sub>O<sub>2</sub> treatment, with demethylation being the most dominant and CHNOS compounds exhibiting the highest reactivity. UF treatment had minimal impact on DOM molecular structure, whereas RO effectively rejected most DOM. Due to steric hindrance and electrostatic repulsion, RO preferentially removed organic compounds with high <em>m</em>/<em>z</em>, high O/C, and high unsaturation. Additionally, linear alkyl benzene sulfonates showed a relatively high abundance in RO effluent due to its high ionization efficiency, while non-mineralized DOM was concentrated in the RO concentrate. This study provides crucial insights into the optimization of oxidation-membrane combined processes for SGW treatment at the molecular level.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"55 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2024.131110","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of oxidation and membrane technologies demonstrates significant potential in shale gas wastewater (SGW) treatment. However, the molecular-level transformation mechanisms of the complex dissolved organic matter (DOM) in SGW during this coupled process remain unclear. This study systematically assessed the performance of UV/H2O2-ultrafiltration (UF)-reverse osmosis (RO) combined process in removing contaminations from SGW and used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to elucidate the transformation characteristics and mechanisms of DOM during treatment. At an optimal H2O2 dosage (100 mg/L), UV/H2O2 oxidation removed 16.76 % of UV254 and 12.96 % of fluorescent dissolved organic matter, while achieving only 4.50 % removal of dissolved organic carbon, indicating that structural transformations of DOM were predominant over mineralization. FT-ICR MS analysis showed that UV/H2O2 significantly increased DOM saturation and oxidation, effectively degrading highly aromatic compounds such as polyphenols and polycyclic aromatic hydrocarbons, with a preferential removal of reduced organic compounds. Mass difference analysis, based on 19 transformation reactions, identified dealkylation, oxygenation, dehydrogenation, dehydration, and decarboxylation as common reactions during UV/H2O2 treatment, with demethylation being the most dominant and CHNOS compounds exhibiting the highest reactivity. UF treatment had minimal impact on DOM molecular structure, whereas RO effectively rejected most DOM. Due to steric hindrance and electrostatic repulsion, RO preferentially removed organic compounds with high m/z, high O/C, and high unsaturation. Additionally, linear alkyl benzene sulfonates showed a relatively high abundance in RO effluent due to its high ionization efficiency, while non-mineralized DOM was concentrated in the RO concentrate. This study provides crucial insights into the optimization of oxidation-membrane combined processes for SGW treatment at the molecular level.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.