Multi-resolution isogeometric analysis – efficient adaptivity utilizing the multi-patch structure

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Stefan Takacs, Stefan Tyoler
{"title":"Multi-resolution isogeometric analysis – efficient adaptivity utilizing the multi-patch structure","authors":"Stefan Takacs, Stefan Tyoler","doi":"10.1016/j.camwa.2024.12.005","DOIUrl":null,"url":null,"abstract":"Isogeometric Analysis (IgA) is a spline-based approach to the numerical solution of partial differential equations. The concept of IgA was designed to address two major issues. The first issue is the exact representation of domains generated from Computer-Aided Design (CAD) software. In practice, this can be realized only with multi-patch IgA, often in combination with trimming or similar techniques. The second issue is the realization of high-order discretizations (by increasing the spline degree) with a number of degrees of freedom comparable to low-order methods. High-order methods can deliver their full potential only if the solution to be approximated is sufficiently smooth; otherwise, adaptive methods are required. A zoo of local refinement strategies for splines has been developed in the last decades. Such approaches impede the utilization of recent advances that rely on tensor-product splines, e.g., matrix assembly and preconditioning. We propose a strategy for adaptive IgA that utilizes well-known approaches from the multi-patch IgA toolbox: using tensor-product splines locally, but allow for unstructured patch configurations globally. Our approach moderately increases the number of patches and utilizes different grid sizes for each patch. This allows reusing the existing code bases, recovers the convergence rates of other adaptive approaches, and increases the number of degrees of freedom only marginally. We provide an algorithm for the computation of a global basis and show that it works in any case. Additionally, we give approximation error estimates. Numerical experiments illustrate our results.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"23 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2024.12.005","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Isogeometric Analysis (IgA) is a spline-based approach to the numerical solution of partial differential equations. The concept of IgA was designed to address two major issues. The first issue is the exact representation of domains generated from Computer-Aided Design (CAD) software. In practice, this can be realized only with multi-patch IgA, often in combination with trimming or similar techniques. The second issue is the realization of high-order discretizations (by increasing the spline degree) with a number of degrees of freedom comparable to low-order methods. High-order methods can deliver their full potential only if the solution to be approximated is sufficiently smooth; otherwise, adaptive methods are required. A zoo of local refinement strategies for splines has been developed in the last decades. Such approaches impede the utilization of recent advances that rely on tensor-product splines, e.g., matrix assembly and preconditioning. We propose a strategy for adaptive IgA that utilizes well-known approaches from the multi-patch IgA toolbox: using tensor-product splines locally, but allow for unstructured patch configurations globally. Our approach moderately increases the number of patches and utilizes different grid sizes for each patch. This allows reusing the existing code bases, recovers the convergence rates of other adaptive approaches, and increases the number of degrees of freedom only marginally. We provide an algorithm for the computation of a global basis and show that it works in any case. Additionally, we give approximation error estimates. Numerical experiments illustrate our results.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信