Monolithically Integrated Ultra‐Low Threshold GeSn‐on‐Insulator Laser Using Rapid Melting Growth

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Zhi Liu, Melvina Chen, Xiangquan Liu, Qinxin Huang, Yupeng Zhu, Yuhua Zuo, Zoran Ikonic, Buwen Cheng, Donguk Nam, Jun Zheng
{"title":"Monolithically Integrated Ultra‐Low Threshold GeSn‐on‐Insulator Laser Using Rapid Melting Growth","authors":"Zhi Liu, Melvina Chen, Xiangquan Liu, Qinxin Huang, Yupeng Zhu, Yuhua Zuo, Zoran Ikonic, Buwen Cheng, Donguk Nam, Jun Zheng","doi":"10.1002/lpor.202401077","DOIUrl":null,"url":null,"abstract":"A low‐threshold, monolithically integrated laser on Si is considered a crucial missing ingredient in realizing efficient fully functional photonic‐integrated circuits (PICs). Owing to its compatibility with complementary metal‐semiconductor‐oxide (CMOS) processes, direct bandgap GeSn alloy has recently been studied intensively in hopes of making GeSn lasers the mainstream technology for PICs. However, the inevitable formation of harmful defects in GeSn directly grown on Si has thus far required the use of non‐monolithic approaches such as wafer bonding to obtain high‐quality GeSn layers, preventing the realization of practical, low‐threshold GeSn lasers. Here, ultra‐low threshold lasing in a monolithically‐grown, nearly‐defect‐free GeSn single‐crystal layer is demonstrated. The rapid melting growth method used in this study allows the fabrication of a compact, integrated laser that simultaneously achieves an ideal GeSn gain medium with built‐in tensile strain and an excellent GeSn optical cavity on an insulating layer. The measured threshold is ≈0.52 kW cm<jats:sup>−2</jats:sup> under the optical pumping scheme at 10 K, which is the lowest among all the reported GeSn lasers. This work provides a new solution for building a truly CMOS‐compatible, monolithic laser that can complete the device library of the mature Si photonics foundries.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"91 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401077","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A low‐threshold, monolithically integrated laser on Si is considered a crucial missing ingredient in realizing efficient fully functional photonic‐integrated circuits (PICs). Owing to its compatibility with complementary metal‐semiconductor‐oxide (CMOS) processes, direct bandgap GeSn alloy has recently been studied intensively in hopes of making GeSn lasers the mainstream technology for PICs. However, the inevitable formation of harmful defects in GeSn directly grown on Si has thus far required the use of non‐monolithic approaches such as wafer bonding to obtain high‐quality GeSn layers, preventing the realization of practical, low‐threshold GeSn lasers. Here, ultra‐low threshold lasing in a monolithically‐grown, nearly‐defect‐free GeSn single‐crystal layer is demonstrated. The rapid melting growth method used in this study allows the fabrication of a compact, integrated laser that simultaneously achieves an ideal GeSn gain medium with built‐in tensile strain and an excellent GeSn optical cavity on an insulating layer. The measured threshold is ≈0.52 kW cm−2 under the optical pumping scheme at 10 K, which is the lowest among all the reported GeSn lasers. This work provides a new solution for building a truly CMOS‐compatible, monolithic laser that can complete the device library of the mature Si photonics foundries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信