Reactivity and Mechanism of Recoverable Pd1@C3N4 Single-Atom Catalyst in Buchwald–Hartwig Aminations

IF 11.3 1区 化学 Q1 CHEMISTRY, PHYSICAL
Georgios Giannakakis, Marc Eduard Usteri, Aram Bugaev, Andrea Ruiz-Ferrando, Dario Faust Akl, Núria López, Serena Fantasia, Kurt Püntener, Javier Pérez-Ramírez, Sharon Mitchell
{"title":"Reactivity and Mechanism of Recoverable Pd1@C3N4 Single-Atom Catalyst in Buchwald–Hartwig Aminations","authors":"Georgios Giannakakis, Marc Eduard Usteri, Aram Bugaev, Andrea Ruiz-Ferrando, Dario Faust Akl, Núria López, Serena Fantasia, Kurt Püntener, Javier Pérez-Ramírez, Sharon Mitchell","doi":"10.1021/acscatal.4c05134","DOIUrl":null,"url":null,"abstract":"Buchwald–Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C–C cross-couplings. Yet their use in C–N couplings remains unexplored, and mechanistic insights into amine coupling with aryl halides over solid surfaces that could guide catalyst design are lacking. Here, we demonstrate that palladium atoms coordinated to well-defined heptazinic cavities of graphitic carbon nitride (Pd<sub>1</sub>@C<sub>3</sub>N<sub>4</sub>) deliver practically relevant yields for BH couplings across various aryl halides and amines, exhibiting persistent activity and negligible leaching over several cycles. Notably, Pd<sub>1</sub>@C<sub>3</sub>N<sub>4</sub> shows comparable or superior activity with certain aryl chlorides to bromides, alongside high chemoselectivity for amines over amides. In situ X-ray absorption spectroscopy analyses supported by density functional theory simulations identify the concerted role of the ligand and the C<sub>3</sub>N<sub>4</sub> host in determining the performance, with a Pd(II) nominal oxidation state observed under all coupling conditions. Complementary structural and kinetic studies highlight a distinct reaction mechanism than that typically reported for homogeneous catalysts. These findings offer key insights for designing recyclable SAC for BH coupling, setting the basis for extending the scope toward more complex industrial targets.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"19 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c05134","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Buchwald–Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C–C cross-couplings. Yet their use in C–N couplings remains unexplored, and mechanistic insights into amine coupling with aryl halides over solid surfaces that could guide catalyst design are lacking. Here, we demonstrate that palladium atoms coordinated to well-defined heptazinic cavities of graphitic carbon nitride (Pd1@C3N4) deliver practically relevant yields for BH couplings across various aryl halides and amines, exhibiting persistent activity and negligible leaching over several cycles. Notably, Pd1@C3N4 shows comparable or superior activity with certain aryl chlorides to bromides, alongside high chemoselectivity for amines over amides. In situ X-ray absorption spectroscopy analyses supported by density functional theory simulations identify the concerted role of the ligand and the C3N4 host in determining the performance, with a Pd(II) nominal oxidation state observed under all coupling conditions. Complementary structural and kinetic studies highlight a distinct reaction mechanism than that typically reported for homogeneous catalysts. These findings offer key insights for designing recyclable SAC for BH coupling, setting the basis for extending the scope toward more complex industrial targets.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信