Jiahao Zhang, Kaiyu Jin, Yifei Feng, Da Lu, Mai Chen, Hucheng Wang, Cheng Jin, Dengyu Wang, Zhiling Li, Yiming Wang
{"title":"Injectable Self-Healing and Anti-Dissolving Low-Molecular-Weight Hydrogels Enabled by Ionic Cross-Linking for Cell Encapsulation","authors":"Jiahao Zhang, Kaiyu Jin, Yifei Feng, Da Lu, Mai Chen, Hucheng Wang, Cheng Jin, Dengyu Wang, Zhiling Li, Yiming Wang","doi":"10.1021/acsmacrolett.4c00725","DOIUrl":null,"url":null,"abstract":"Injectable behavior is often observed in polymer-based hydrogels yet is rarely achieved in low-molecular-weight hydrogels (LMWHs), the realization of which may boost the development of new soft materials for biomedical applications. Here, we report on injectable self-healing and antidissolving LMWHs that are formed through a simple ionic cross-linking strategy, showing a fundamental application for the encapsulation of living cells. The LMWHs are formed by simply mixing Ca<sup>2+</sup> with negatively charged supramolecular polymers. Surprisingly, the resultant hydrogels are capable of rapidly self-healing within seconds after damage, showing an unexpected injectable function. When the hydrogel is injected into an aqueous medium, continuous macroscopic hydrogel fibers can be produced. Interestingly, the hydrogel can remain intact in the aqueous medium, showing impressive antidissolving behavior which is less observed in other LMWHs. Furthermore, the hydrogel is demonstrated to be nontoxic and can be used as a cytocompatible scaffold for living cells. This work may open an avenue toward injectable and antidissolving LMWHs for the ever-expanding list of applications in biotherapy and bioprinting.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"78 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsmacrolett.4c00725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Injectable behavior is often observed in polymer-based hydrogels yet is rarely achieved in low-molecular-weight hydrogels (LMWHs), the realization of which may boost the development of new soft materials for biomedical applications. Here, we report on injectable self-healing and antidissolving LMWHs that are formed through a simple ionic cross-linking strategy, showing a fundamental application for the encapsulation of living cells. The LMWHs are formed by simply mixing Ca2+ with negatively charged supramolecular polymers. Surprisingly, the resultant hydrogels are capable of rapidly self-healing within seconds after damage, showing an unexpected injectable function. When the hydrogel is injected into an aqueous medium, continuous macroscopic hydrogel fibers can be produced. Interestingly, the hydrogel can remain intact in the aqueous medium, showing impressive antidissolving behavior which is less observed in other LMWHs. Furthermore, the hydrogel is demonstrated to be nontoxic and can be used as a cytocompatible scaffold for living cells. This work may open an avenue toward injectable and antidissolving LMWHs for the ever-expanding list of applications in biotherapy and bioprinting.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.