Masoud Zamani, Dayron M. Leyva Rodriguez, Ziwen Zhang, Camila Sabatini, Mark T. Swihart, Michelle B. Visser, Chong Cheng
{"title":"Synthesis of Polymer-Clindamycin Conjugates through Lipase-Catalyzed Esterification and RAFT Polymerization","authors":"Masoud Zamani, Dayron M. Leyva Rodriguez, Ziwen Zhang, Camila Sabatini, Mark T. Swihart, Michelle B. Visser, Chong Cheng","doi":"10.1016/j.polymer.2024.127965","DOIUrl":null,"url":null,"abstract":"Relative to free antibiotics, polymer-antibiotic conjugates (PACs) can possess modified solubility, sustained release behavior, and prolonged bioactivity in biological systems. As one of the most potent and ubiquitous antibiotics, clindamycin (Clin) has broad-spectrum antibiotic activity with versatile medical applications. However, polymer-Clin conjugates have not been reported yet. This can be partly ascribed to the difficulties in selective modification of Clin which possesses multiple reactive hydroxyl groups. In this study, we employed immobilized lipase as a bio-based catalyst for the facile and highly regioselective synthesis of a methacrylic-functionalized monomer-Clin conjugate via a one-step reaction. Reversible addition fragmentation chain transfer (RAFT) polymerization was then employed to synthesize copolymers of the monomer-Clin conjugate with 2-hydroxymethyl methacrylate or 3-[(3-acrylamidopropyl) dimethylammonio]propanoate to achieve water-insoluble and water-soluble Clin-containing PACs, respectively. These PACs possessed well-defined structures with high Clin content (33-46 wt%), as confirmed by <sup>1</sup>H NMR and gel permeation chromatography characterizations. Living nature of the RAFT process for the synthesis of PACs was verified by a chain-extension experiment. With sustained Clin release behavior, these PACs further demonstrated notable antibacterial activities against Streptococcus mutans, as verified by zone of inhibition tests. Collectively, this work presents an efficient method to synthesize different types of Clin-containing PACs, with potential for use in diverse antibacterial applications.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"258 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127965","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Relative to free antibiotics, polymer-antibiotic conjugates (PACs) can possess modified solubility, sustained release behavior, and prolonged bioactivity in biological systems. As one of the most potent and ubiquitous antibiotics, clindamycin (Clin) has broad-spectrum antibiotic activity with versatile medical applications. However, polymer-Clin conjugates have not been reported yet. This can be partly ascribed to the difficulties in selective modification of Clin which possesses multiple reactive hydroxyl groups. In this study, we employed immobilized lipase as a bio-based catalyst for the facile and highly regioselective synthesis of a methacrylic-functionalized monomer-Clin conjugate via a one-step reaction. Reversible addition fragmentation chain transfer (RAFT) polymerization was then employed to synthesize copolymers of the monomer-Clin conjugate with 2-hydroxymethyl methacrylate or 3-[(3-acrylamidopropyl) dimethylammonio]propanoate to achieve water-insoluble and water-soluble Clin-containing PACs, respectively. These PACs possessed well-defined structures with high Clin content (33-46 wt%), as confirmed by 1H NMR and gel permeation chromatography characterizations. Living nature of the RAFT process for the synthesis of PACs was verified by a chain-extension experiment. With sustained Clin release behavior, these PACs further demonstrated notable antibacterial activities against Streptococcus mutans, as verified by zone of inhibition tests. Collectively, this work presents an efficient method to synthesize different types of Clin-containing PACs, with potential for use in diverse antibacterial applications.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.