A continuous self-circulating granular sludge treatment process for real municipal wastewater: Regulation strategy, exploring granularity and stabilization, and processing performance

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Wei-Kang Qi, Tian-Yuan Du, Shu-Jun Zhang, Liang Zhang, Yong-Zhen Peng, Cong Wang
{"title":"A continuous self-circulating granular sludge treatment process for real municipal wastewater: Regulation strategy, exploring granularity and stabilization, and processing performance","authors":"Wei-Kang Qi, Tian-Yuan Du, Shu-Jun Zhang, Liang Zhang, Yong-Zhen Peng, Cong Wang","doi":"10.1016/j.jclepro.2024.144528","DOIUrl":null,"url":null,"abstract":"Existing continuous flow reactors (CFR) utilized for the investigation of aerobic granular sludge (AGS) exhibit structural complexity and suboptimal energy efficiency. An innovative aeration self-circulating CFR (Zier rector) was employed in this study for the cultivation of AGS. The experiment was performed 202 days using real municipal wastewater under varying operating conditions. A hydraulic retention time of 10 h and adequate influent organic matter resulted in a chemical oxygen demand removal efficiency of 85%, an ammonia nitrogen removal efficiency exceeding 92%, and a total nitrogen removal efficiency ranging from 60% to 70%. The particle size increased when the up-flow velocity was maintained between 9.8 and 18 m/h, the self-circulating multiple times ratio was sustained within 12 to 30 times, and the food-to-microorganism was set within 0.2 to 0.6 g COD/(g MLSS·d). Ultimately, the mass proportion of sludge with a particle size larger than 0.2 mm was 75%, with 42% exceeding 0.5 mm. The stability of AGS and the treatment efficacy of the Zier process were influenced by the temperature and volume ratio of the nonaerated to the aerated zones. The Zier process demonstrates enhanced advantages and application potential, rendering it a more appealing option for a broader spectrum of water treatment facilities.","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"77 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jclepro.2024.144528","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Existing continuous flow reactors (CFR) utilized for the investigation of aerobic granular sludge (AGS) exhibit structural complexity and suboptimal energy efficiency. An innovative aeration self-circulating CFR (Zier rector) was employed in this study for the cultivation of AGS. The experiment was performed 202 days using real municipal wastewater under varying operating conditions. A hydraulic retention time of 10 h and adequate influent organic matter resulted in a chemical oxygen demand removal efficiency of 85%, an ammonia nitrogen removal efficiency exceeding 92%, and a total nitrogen removal efficiency ranging from 60% to 70%. The particle size increased when the up-flow velocity was maintained between 9.8 and 18 m/h, the self-circulating multiple times ratio was sustained within 12 to 30 times, and the food-to-microorganism was set within 0.2 to 0.6 g COD/(g MLSS·d). Ultimately, the mass proportion of sludge with a particle size larger than 0.2 mm was 75%, with 42% exceeding 0.5 mm. The stability of AGS and the treatment efficacy of the Zier process were influenced by the temperature and volume ratio of the nonaerated to the aerated zones. The Zier process demonstrates enhanced advantages and application potential, rendering it a more appealing option for a broader spectrum of water treatment facilities.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信