{"title":"Resonant Conversion of Wave Dark Matter in the Ionosphere","authors":"Carl Beadle, Andrea Caputo, Sebastian A. R. Ellis","doi":"10.1103/physrevlett.133.251001","DOIUrl":null,"url":null,"abstract":"We consider resonant wavelike dark matter conversion into low-frequency radio waves in the Earth’s ionosphere. Resonant conversion occurs when the dark matter mass and the plasma frequency coincide, defining a range m</a:mi>DM</a:mi></a:mrow></a:msub>∼</a:mo>10</a:mn>−</a:mo>9</a:mn></a:mrow></a:msup>–</a:mi>10</a:mn>−</a:mo>8</a:mn></a:mrow></a:msup></a:mtext></a:mtext>eV</a:mi></a:math> where this approach is best suited. Owing to the nonrelativistic nature of dark matter and the typical variational scale of the Earth’s ionosphere, the standard linearized approach to computing dark matter conversion is not suitable. We therefore solve a second-order boundary-value problem, effectively framing the ionosphere as a driven cavity filled with a positionally varying plasma. An electrically small dipole antenna targeting the generated radio waves can be orders of magnitude more sensitive to dark photon and axionlike particle dark matter in the relevant mass range. This Letter opens up a promising way of testing hitherto unexplored parameter space that could be further improved with a dedicated instrument. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"64 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.251001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider resonant wavelike dark matter conversion into low-frequency radio waves in the Earth’s ionosphere. Resonant conversion occurs when the dark matter mass and the plasma frequency coincide, defining a range mDM∼10−9–10−8eV where this approach is best suited. Owing to the nonrelativistic nature of dark matter and the typical variational scale of the Earth’s ionosphere, the standard linearized approach to computing dark matter conversion is not suitable. We therefore solve a second-order boundary-value problem, effectively framing the ionosphere as a driven cavity filled with a positionally varying plasma. An electrically small dipole antenna targeting the generated radio waves can be orders of magnitude more sensitive to dark photon and axionlike particle dark matter in the relevant mass range. This Letter opens up a promising way of testing hitherto unexplored parameter space that could be further improved with a dedicated instrument. Published by the American Physical Society2024
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks