AI-powered fraud and the erosion of online survey integrity: an analysis of 31 fraud detection strategies.

Frontiers in research metrics and analytics Pub Date : 2024-12-02 eCollection Date: 2024-01-01 DOI:10.3389/frma.2024.1432774
Natalia Pinzón, Vikram Koundinya, Ryan E Galt, William O'R Dowling, Marcela Baukloh, Namah C Taku-Forchu, Tracy Schohr, Leslie M Roche, Samuel Ikendi, Mark Cooper, Lauren E Parker, Tapan B Pathak
{"title":"AI-powered fraud and the erosion of online survey integrity: an analysis of 31 fraud detection strategies.","authors":"Natalia Pinzón, Vikram Koundinya, Ryan E Galt, William O'R Dowling, Marcela Baukloh, Namah C Taku-Forchu, Tracy Schohr, Leslie M Roche, Samuel Ikendi, Mark Cooper, Lauren E Parker, Tapan B Pathak","doi":"10.3389/frma.2024.1432774","DOIUrl":null,"url":null,"abstract":"<p><p>The proliferation of AI-powered bots and sophisticated fraudsters poses a significant threat to the integrity of scientific studies reliant on online surveys across diverse disciplines, including health, social, environmental and political sciences. We found a substantial decline in usable responses from online surveys from 75 to 10% in recent years due to survey fraud. Monetary incentives attract sophisticated fraudsters capable of mimicking genuine open-ended responses and verifying information submitted months prior, showcasing the advanced capabilities of online survey fraud today. This study evaluates the efficacy of 31 fraud indicators and six ensembles using two agriculture surveys in California. To evaluate the performance of each indicator, we use predictive power and recall. Predictive power is a novel variation of precision introduced in this study, and both are simple metrics that allow for non-academic survey practitioners to replicate our methods. The best indicators included a novel email address score, MinFraud Risk Score, consecutive submissions, opting-out of incentives, improbable location.</p>","PeriodicalId":73104,"journal":{"name":"Frontiers in research metrics and analytics","volume":"9 ","pages":"1432774"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646990/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in research metrics and analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frma.2024.1432774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of AI-powered bots and sophisticated fraudsters poses a significant threat to the integrity of scientific studies reliant on online surveys across diverse disciplines, including health, social, environmental and political sciences. We found a substantial decline in usable responses from online surveys from 75 to 10% in recent years due to survey fraud. Monetary incentives attract sophisticated fraudsters capable of mimicking genuine open-ended responses and verifying information submitted months prior, showcasing the advanced capabilities of online survey fraud today. This study evaluates the efficacy of 31 fraud indicators and six ensembles using two agriculture surveys in California. To evaluate the performance of each indicator, we use predictive power and recall. Predictive power is a novel variation of precision introduced in this study, and both are simple metrics that allow for non-academic survey practitioners to replicate our methods. The best indicators included a novel email address score, MinFraud Risk Score, consecutive submissions, opting-out of incentives, improbable location.

人工智能驱动的欺诈和在线调查完整性的侵蚀:对31种欺诈检测策略的分析。
人工智能机器人和复杂欺诈者的激增,对依赖于健康、社会、环境和政治科学等不同学科在线调查的科学研究的完整性构成了重大威胁。我们发现,近年来,由于调查欺诈,在线调查的可用回复从75%大幅下降到10%。金钱奖励吸引了老练的欺诈者,他们能够模仿真实的开放式回答,并核实几个月前提交的信息,展示了当今在线调查欺诈的先进能力。本研究利用加州的两次农业调查,评估了31个欺诈指标和6个组合的有效性。为了评估每个指标的表现,我们使用预测能力和召回率。预测能力是本研究中引入的精度的新变化,两者都是简单的指标,允许非学术调查从业者复制我们的方法。最佳指标包括新颖的电子邮件地址得分、最小欺诈风险得分、连续提交、选择退出奖励、不可能的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信