Contributions of attention to learning in multidimensional reward environments.

IF 4.4 2区 医学 Q1 NEUROSCIENCES
Michael Chong Wang, Alireza Soltani
{"title":"Contributions of attention to learning in multidimensional reward environments.","authors":"Michael Chong Wang, Alireza Soltani","doi":"10.1523/JNEUROSCI.2300-23.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Real-world choice options have many features or attributes, whereas the reward outcome from those options only depends on a few features or attributes. It has been shown that humans learn and combine feature-based with more complex conjunction-based learning to tackle challenges of learning in naturalistic reward environments. However, it remains unclear how different learning strategies interact to determine what features or conjunctions should be attended to and control choice behavior, and how subsequent attentional modulations influence future learning and choice. To address these questions, we examined the behavior of male and female human participants during a three-dimensional learning task in which reward outcomes for different stimuli could be predicted based on a combination of an informative feature and conjunction. Using multiple approaches, we found that both choice behavior and reward probabilities estimated by participants were most accurately described by attention-modulated models that learned the predictive values of both the informative feature and the informative conjunction. Specifically, in the reinforcement learning model that best fit choice data, attention was controlled by the difference in the integrated feature and conjunction values. The resulting attention weights modulated learning by increasing the learning rate on attended features and conjunctions. Critically, modulating decision making by attention weights did not improve the fit of data, providing little evidence for direct attentional effects on choice. These results suggest that in multidimensional environments, humans direct their attention not only to selectively process reward-predictive attributes, but also to find parsimonious representations of the reward contingencies for more efficient learning.<b>Significance Statement</b> From trying exotic recipes to befriending new social groups, outcomes of real-life actions depend on many factors, but how do we learn the predictive values of those factors based on feedback we receive? It has been shown that humans simplify this problem by focusing on individual features that are most predictive of the outcomes but can extend their learning strategy to include combinations of features when necessary. Here, we examined interaction between attention and learning in a multidimensional reward environment that requires learning about individual features and their conjunctions. Using multiple approaches, we found that learning about features and conjunctions control attention in a cooperative manner and that the ensuing attentional modulations mainly affects future learning and not decision making.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.2300-23.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Real-world choice options have many features or attributes, whereas the reward outcome from those options only depends on a few features or attributes. It has been shown that humans learn and combine feature-based with more complex conjunction-based learning to tackle challenges of learning in naturalistic reward environments. However, it remains unclear how different learning strategies interact to determine what features or conjunctions should be attended to and control choice behavior, and how subsequent attentional modulations influence future learning and choice. To address these questions, we examined the behavior of male and female human participants during a three-dimensional learning task in which reward outcomes for different stimuli could be predicted based on a combination of an informative feature and conjunction. Using multiple approaches, we found that both choice behavior and reward probabilities estimated by participants were most accurately described by attention-modulated models that learned the predictive values of both the informative feature and the informative conjunction. Specifically, in the reinforcement learning model that best fit choice data, attention was controlled by the difference in the integrated feature and conjunction values. The resulting attention weights modulated learning by increasing the learning rate on attended features and conjunctions. Critically, modulating decision making by attention weights did not improve the fit of data, providing little evidence for direct attentional effects on choice. These results suggest that in multidimensional environments, humans direct their attention not only to selectively process reward-predictive attributes, but also to find parsimonious representations of the reward contingencies for more efficient learning.Significance Statement From trying exotic recipes to befriending new social groups, outcomes of real-life actions depend on many factors, but how do we learn the predictive values of those factors based on feedback we receive? It has been shown that humans simplify this problem by focusing on individual features that are most predictive of the outcomes but can extend their learning strategy to include combinations of features when necessary. Here, we examined interaction between attention and learning in a multidimensional reward environment that requires learning about individual features and their conjunctions. Using multiple approaches, we found that learning about features and conjunctions control attention in a cooperative manner and that the ensuing attentional modulations mainly affects future learning and not decision making.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信