{"title":"Interplay of cell death pathways and immune responses in ischemic stroke: insights into novel biomarkers.","authors":"Arian Daneshpour, Zoha Shaka, Nima Rezaei","doi":"10.1515/revneuro-2024-0128","DOIUrl":null,"url":null,"abstract":"<p><p>Stroke is a severe neurological disease and a major worldwide issue, mostly manifesting as ischemic stroke (IS). In order to create effective treatments for IS, it is imperative to fully understand the underlying pathologies, as the existing therapeutic choices are inadequate. Recent investigations have shown the complex relationships between several programmed cell death (PCD) pathways, including necroptosis, ferroptosis, and pyroptosis, and their correlation with immune responses during IS. However, this relationship is still unclear. To address this gap, this review study explored the cellular interactions in the immune microenvironment of IS. Then, to validate prior findings and uncover biomarkers, the study investigated bioinformatics studies. Several pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Toll-like receptor 4 (TLR4), and receptor-interacting protein kinase (RIPK), were involved in PCD-immune interactions. The bioinformatics studies reported key biomarkers such as glutathione peroxidase 4 (GPX4), NOD-like receptor family pyrin domain containing 3 (NLRP3), gasdermin D (GSDMD), and TLR4, which have important implications in ferroptosis, cuproptosis, pyroptosis, and necroptosis respectively. These biomarkers were associated with PCD mechanisms such as oxidative stress and inflammatory reactions. The immune infiltration analysis consistently revealed a significant correlation between PCD pathways and detrimental immune cells, such as neutrophils and γδ T cells. Conversely, M2 macrophages and T helper cells showed protective effects. In conclusion, considering the intricate network of interactions between immune responses and PCD pathways, this study emphasized the necessity of a paradigm shift in therapeutic approaches to address the injuries that are related to this complex network.</p>","PeriodicalId":49623,"journal":{"name":"Reviews in the Neurosciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in the Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/revneuro-2024-0128","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Stroke is a severe neurological disease and a major worldwide issue, mostly manifesting as ischemic stroke (IS). In order to create effective treatments for IS, it is imperative to fully understand the underlying pathologies, as the existing therapeutic choices are inadequate. Recent investigations have shown the complex relationships between several programmed cell death (PCD) pathways, including necroptosis, ferroptosis, and pyroptosis, and their correlation with immune responses during IS. However, this relationship is still unclear. To address this gap, this review study explored the cellular interactions in the immune microenvironment of IS. Then, to validate prior findings and uncover biomarkers, the study investigated bioinformatics studies. Several pathways, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Toll-like receptor 4 (TLR4), and receptor-interacting protein kinase (RIPK), were involved in PCD-immune interactions. The bioinformatics studies reported key biomarkers such as glutathione peroxidase 4 (GPX4), NOD-like receptor family pyrin domain containing 3 (NLRP3), gasdermin D (GSDMD), and TLR4, which have important implications in ferroptosis, cuproptosis, pyroptosis, and necroptosis respectively. These biomarkers were associated with PCD mechanisms such as oxidative stress and inflammatory reactions. The immune infiltration analysis consistently revealed a significant correlation between PCD pathways and detrimental immune cells, such as neutrophils and γδ T cells. Conversely, M2 macrophages and T helper cells showed protective effects. In conclusion, considering the intricate network of interactions between immune responses and PCD pathways, this study emphasized the necessity of a paradigm shift in therapeutic approaches to address the injuries that are related to this complex network.
脑卒中是一种严重的神经系统疾病,也是世界性的重大问题,主要表现为缺血性脑卒中(IS)。由于现有的治疗方法并不完善,要想有效治疗缺血性中风,就必须充分了解其潜在的病理机制。最近的研究表明,包括坏死、铁凋亡和热凋亡在内的几种程序性细胞死亡(PCD)通路之间存在复杂的关系,它们与 IS 期间的免疫反应也有关联。然而,这种关系仍不清楚。为了填补这一空白,本综述研究探讨了IS免疫微环境中的细胞相互作用。然后,为了验证之前的研究结果并发现生物标志物,该研究对生物信息学研究进行了调查。包括核因子卡巴轻链-活化B细胞增强因子(NF-κB)、Toll样受体4(TLR4)和受体相互作用蛋白激酶(RIPK)在内的几种通路参与了PCD与免疫的相互作用。生物信息学研究报告了一些关键的生物标志物,如谷胱甘肽过氧化物酶4(GPX4)、NOD样受体家族含吡林结构域3(NLRP3)、gasdermin D(GSDMD)和TLR4,它们分别在铁变性、杯突变性、热变性和坏死中具有重要影响。这些生物标志物与氧化应激和炎症反应等 PCD 机制有关。免疫浸润分析一致表明,PCD 途径与中性粒细胞和 γδ T 细胞等有害免疫细胞之间存在显著相关性。相反,M2 巨噬细胞和 T 辅助细胞则具有保护作用。总之,考虑到免疫反应和 PCD 通路之间错综复杂的相互作用网络,本研究强调有必要转变治疗方法的范式,以解决与这一复杂网络相关的损伤问题。
期刊介绍:
Reviews in the Neurosciences provides a forum for reviews, critical evaluations and theoretical treatment of selective topics in the neurosciences. The journal is meant to provide an authoritative reference work for those interested in the structure and functions of the nervous system at all levels of analysis, including the genetic, molecular, cellular, behavioral, cognitive and clinical neurosciences. Contributions should contain a critical appraisal of specific areas and not simply a compilation of published articles.