{"title":"Exchangeable coalescents beyond the Cannings class.","authors":"Arno Siri-Jégousse, Alejandro H Wences","doi":"10.1007/s00285-024-02173-x","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a general framework for the study of the genealogy of neutral discrete-time populations. We remove the standard assumption of exchangeability of offspring distributions appearing in Cannings models, and replace it by a less restrictive condition of non-heritability of reproductive success. We provide a general criterion for the weak convergence of their genealogies to <math><mi>Ξ</mi></math> -coalescents, and apply it to a simple parametrization of our scenario (which, under mild conditions, we also prove to essentially include the general case). We provide examples for such populations, including models with highly-asymmetric offspring distributions and populations undergoing random but recurrent bottlenecks. Finally we study the limit genealogy of a new exponential model which, as previously shown for related models and in spite of its built-in (fitness) inheritance mechanism, can be brought into our setting.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 1","pages":"7"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02173-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a general framework for the study of the genealogy of neutral discrete-time populations. We remove the standard assumption of exchangeability of offspring distributions appearing in Cannings models, and replace it by a less restrictive condition of non-heritability of reproductive success. We provide a general criterion for the weak convergence of their genealogies to -coalescents, and apply it to a simple parametrization of our scenario (which, under mild conditions, we also prove to essentially include the general case). We provide examples for such populations, including models with highly-asymmetric offspring distributions and populations undergoing random but recurrent bottlenecks. Finally we study the limit genealogy of a new exponential model which, as previously shown for related models and in spite of its built-in (fitness) inheritance mechanism, can be brought into our setting.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.