Hermetia illucens larvae oil as an alternative lipid source: Effects on immune function, antioxidant activity, and inflammatory response in gilthead seabream juveniles.
Sara Moutinho, Helena Peres, Filipa Fontinha, Tássia Estevão-Rodrigues, Óscar Monroig, Rui Magalhães, Lina Pulido-Rodríguez, Giuliana Parisi, Aires Oliva-Teles
{"title":"Hermetia illucens larvae oil as an alternative lipid source: Effects on immune function, antioxidant activity, and inflammatory response in gilthead seabream juveniles.","authors":"Sara Moutinho, Helena Peres, Filipa Fontinha, Tássia Estevão-Rodrigues, Óscar Monroig, Rui Magalhães, Lina Pulido-Rodríguez, Giuliana Parisi, Aires Oliva-Teles","doi":"10.1016/j.cbpb.2024.111059","DOIUrl":null,"url":null,"abstract":"<p><p>Hermetia illucens larvae oil (HIO) is a promising new ingredient that can potentially be an alternative lipid source in aquafeeds. To assess its viability in gilthead seabream juvenile diets, a 10-week feeding trial was performed, and the effects on antioxidant, immune, and inflammatory responses were evaluated. Four diets were formulated to include HIO at increasing levels: 0, 4, 7.9, and 9.5 %, replacing a vegetable oil mix at 0, 42 %, 84 %, and 100 %, respectively. At the end of the trial, no significant changes were detected in the plasma immune humoral parameters, except for a linear increase in plasma peroxidase activity. Hepatic lipid peroxidation (LPO) remained unchanged, while the activity of antioxidant enzymes showed a linear increase corresponding to the level of dietary HIO inclusion. Fish fed the HIO diets exhibited lower intestinal LPO, and no differences between groups were observed in the activity of the oxidative stress-related enzymes. Regarding the inflammation-related genes, the different diets did not affect interleukin-1β and transforming growth factor β expressions in the intestine. In contrast, upregulation of tumor necrosis factor α and interleukin-10 was observed, being higher in fish fed the diet with total vegetable oil replacement than the others. In conclusion, these findings suggest that Hermetia illucens larvae oil can be included at levels up to 7.9 % of gilthead seabream juvenile diets without compromising their immune, antioxidant, and inflammatory responses while enhancing intestinal LPO.</p>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":" ","pages":"111059"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cbpb.2024.111059","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hermetia illucens larvae oil (HIO) is a promising new ingredient that can potentially be an alternative lipid source in aquafeeds. To assess its viability in gilthead seabream juvenile diets, a 10-week feeding trial was performed, and the effects on antioxidant, immune, and inflammatory responses were evaluated. Four diets were formulated to include HIO at increasing levels: 0, 4, 7.9, and 9.5 %, replacing a vegetable oil mix at 0, 42 %, 84 %, and 100 %, respectively. At the end of the trial, no significant changes were detected in the plasma immune humoral parameters, except for a linear increase in plasma peroxidase activity. Hepatic lipid peroxidation (LPO) remained unchanged, while the activity of antioxidant enzymes showed a linear increase corresponding to the level of dietary HIO inclusion. Fish fed the HIO diets exhibited lower intestinal LPO, and no differences between groups were observed in the activity of the oxidative stress-related enzymes. Regarding the inflammation-related genes, the different diets did not affect interleukin-1β and transforming growth factor β expressions in the intestine. In contrast, upregulation of tumor necrosis factor α and interleukin-10 was observed, being higher in fish fed the diet with total vegetable oil replacement than the others. In conclusion, these findings suggest that Hermetia illucens larvae oil can be included at levels up to 7.9 % of gilthead seabream juvenile diets without compromising their immune, antioxidant, and inflammatory responses while enhancing intestinal LPO.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.