Benjamin Klintström, Anna Spångeus, Alexandr Malusek, Alexander Synek, Mischa Woisetschläger, Dieter Pahr, Eva Klintström
{"title":"Automated bone property analysis using corrected in vivo dental cone-beam CT data of human wrists.","authors":"Benjamin Klintström, Anna Spångeus, Alexandr Malusek, Alexander Synek, Mischa Woisetschläger, Dieter Pahr, Eva Klintström","doi":"10.1038/s41598-024-75222-6","DOIUrl":null,"url":null,"abstract":"<p><p>Fracture liaison services are essential to mitigate underdiagnosis and undertreatment of osteoporosis-related fractures. However, it often suffers from limited access to dual-energy X-ray absorptiometry (DXA) or high-resolution peripheral quantitative CT equipment. This in vivo study of 21 patients aims to evaluate the feasibility of dental cone beam CT (dCBCT) to analyse bone properties of human wrists, comparing with DXA and finite element (FE) analysis. dCBCT grey-scale values were transformed to HU using a phantom containing materials with known HU values. Strong correlations were found between bone mineral content (BMC) from dCBCT and DXA (r = 0.78 to 0.84, p < 0.001), as well as between BMC from dCBCT FE-predicted stiffness (r = 0.91) and maximum force (r = 0.93), p < 0.001. BMC values from dCBCT were higher than DXA measurements (2.34 g vs. 1.5 g, p < 0.001). Cortical thickness strongly correlated to bone mineral density (BMD) from dCBCT (r = 0.83, p < 0.001). No statistically significant correlations were found between trabecular bone microstructure and FE predictions. The results indicate the feasibility to analyse osteoporosis related bone properties of human wrists from corrected dCBCT data. The dCBCT values of BMD and BMC were strongly correlated with DXA.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30466"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-75222-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fracture liaison services are essential to mitigate underdiagnosis and undertreatment of osteoporosis-related fractures. However, it often suffers from limited access to dual-energy X-ray absorptiometry (DXA) or high-resolution peripheral quantitative CT equipment. This in vivo study of 21 patients aims to evaluate the feasibility of dental cone beam CT (dCBCT) to analyse bone properties of human wrists, comparing with DXA and finite element (FE) analysis. dCBCT grey-scale values were transformed to HU using a phantom containing materials with known HU values. Strong correlations were found between bone mineral content (BMC) from dCBCT and DXA (r = 0.78 to 0.84, p < 0.001), as well as between BMC from dCBCT FE-predicted stiffness (r = 0.91) and maximum force (r = 0.93), p < 0.001. BMC values from dCBCT were higher than DXA measurements (2.34 g vs. 1.5 g, p < 0.001). Cortical thickness strongly correlated to bone mineral density (BMD) from dCBCT (r = 0.83, p < 0.001). No statistically significant correlations were found between trabecular bone microstructure and FE predictions. The results indicate the feasibility to analyse osteoporosis related bone properties of human wrists from corrected dCBCT data. The dCBCT values of BMD and BMC were strongly correlated with DXA.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.