Novel approach for Arabic fake news classification using embedding from large language features with CNN-LSTM ensemble model and explainable AI.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Omar Ibrahim Aboulola, Muhammad Umer
{"title":"Novel approach for Arabic fake news classification using embedding from large language features with CNN-LSTM ensemble model and explainable AI.","authors":"Omar Ibrahim Aboulola, Muhammad Umer","doi":"10.1038/s41598-024-82111-5","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread fake news challenges the management of low-quality information, making effective detection strategies necessary. This study addresses this critical issue by advancing fake news detection in Arabic and overcoming limitations in existing approaches. Deep learning models, Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM), EfficientNetB4, Inception, Xception, ResNet, ConvLSTM and a novel voting ensemble framework combining CNN and LSTM are employed for text classification. The proposed framework integrates the ELMO word embedding technique having contextual representation capabilities, which is compared with GloVe, BERT, FastText and FastText subwords. Comprehensive experiments demonstrate that the proposed voting ensemble, combined with ELMo word embeddings, consistently outperforms previous approaches. It achieves an accuracy of 98.42%, precision of 98.54%, recall of 99.5%, and an F1 score of 98.93%, offering an efficient and highly effective solution for text classification tasks.The proposed framework benchmark against state-of-the-art transformer architectures, including BERT and RoBERTa, demonstrates competitive performance with significantly reduced inference time and enhanced interpretability accompanied by a 5-fold cross-validation technique. Furthermore, this research utilizes the LIME XAI technique to provide deeper insights into the contribution of each feature in predicting a specific target class. These findings show the proposed framework's effectiveness in dealing with the issues of detecting false news, particularly in Arabic text. By generating higher performance metrics and displaying comparable results, this work opens the way for more reliable and interpretable text classification solutions.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"30463"},"PeriodicalIF":3.8000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-82111-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread fake news challenges the management of low-quality information, making effective detection strategies necessary. This study addresses this critical issue by advancing fake news detection in Arabic and overcoming limitations in existing approaches. Deep learning models, Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM), EfficientNetB4, Inception, Xception, ResNet, ConvLSTM and a novel voting ensemble framework combining CNN and LSTM are employed for text classification. The proposed framework integrates the ELMO word embedding technique having contextual representation capabilities, which is compared with GloVe, BERT, FastText and FastText subwords. Comprehensive experiments demonstrate that the proposed voting ensemble, combined with ELMo word embeddings, consistently outperforms previous approaches. It achieves an accuracy of 98.42%, precision of 98.54%, recall of 99.5%, and an F1 score of 98.93%, offering an efficient and highly effective solution for text classification tasks.The proposed framework benchmark against state-of-the-art transformer architectures, including BERT and RoBERTa, demonstrates competitive performance with significantly reduced inference time and enhanced interpretability accompanied by a 5-fold cross-validation technique. Furthermore, this research utilizes the LIME XAI technique to provide deeper insights into the contribution of each feature in predicting a specific target class. These findings show the proposed framework's effectiveness in dealing with the issues of detecting false news, particularly in Arabic text. By generating higher performance metrics and displaying comparable results, this work opens the way for more reliable and interpretable text classification solutions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信