{"title":"Application of Online Anomaly Detection Using One-Class Classification to the Z24 Bridge.","authors":"Amro Abdrabo","doi":"10.3390/s24237866","DOIUrl":null,"url":null,"abstract":"<p><p>The usage of anomaly detection is of critical importance to numerous domains, including structural health monitoring (SHM). In this study, we examine an online setting for damage detection in the Z24 bridge. We evaluate and compare the performance of the elliptic envelope, incremental one-class support vector classification, local outlier factor, half-space trees, and entropy-guided envelopes. Our findings demonstrate that XGBoost exhibits enhanced performance in identifying a limited set of significant features. Additionally, we present a novel approach to manage drift through the application of entropy measures to structural state instances. The study is the first to assess the applicability of one-class classification for anomaly detection on the short-term structural health data of the Z24 bridge.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 23","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24237866","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The usage of anomaly detection is of critical importance to numerous domains, including structural health monitoring (SHM). In this study, we examine an online setting for damage detection in the Z24 bridge. We evaluate and compare the performance of the elliptic envelope, incremental one-class support vector classification, local outlier factor, half-space trees, and entropy-guided envelopes. Our findings demonstrate that XGBoost exhibits enhanced performance in identifying a limited set of significant features. Additionally, we present a novel approach to manage drift through the application of entropy measures to structural state instances. The study is the first to assess the applicability of one-class classification for anomaly detection on the short-term structural health data of the Z24 bridge.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.