A New Sensorized Approach Based on a DeepLabCut Model and IR Thermography for Characterizing the Thermal Profile in Knees During Exercise.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2024-12-09 DOI:10.3390/s24237862
Davide Crisafulli, Marta Spataro, Cristiano De Marchis, Giacomo Risitano, Dario Milone
{"title":"A New Sensorized Approach Based on a DeepLabCut Model and IR Thermography for Characterizing the Thermal Profile in Knees During Exercise.","authors":"Davide Crisafulli, Marta Spataro, Cristiano De Marchis, Giacomo Risitano, Dario Milone","doi":"10.3390/s24237862","DOIUrl":null,"url":null,"abstract":"<p><p>The knee is one of the joints most vulnerable to disease and injury, particularly in athletes and older adults. Surface temperature monitoring provides insights into the health of the analysed area, supporting early diagnosis and monitoring of conditions such as osteoarthritis and tendon injuries. This study presents an innovative approach that combines infrared thermography techniques with a Resnet 152 (DeepLabCut based) to detect and monitor temperature variations across specific knee regions during repeated sit-to-stand exercises. Thermal profiles are then analysed in relation to weight distribution data collected using a Wii Balance Board during the exercise. DeepLabCut was used to automate the selection of the region of interest (ROI) for temperature assessments, improving data accuracy compared to traditional time-consuming semi-automatic methods. This integrative approach enables precise and marker-free measurements, offering clinically relevant data that can aid in the diagnosis of knee pathologies, evaluation of the rehabilitation progress, and assessment of treatment effectiveness. The results emphasize the potential of combining thermography with DeepLabCut-driven data analysis to develop accessible, non-invasive tools for joint health monitoring or preventive diagnostics of pathologies.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 23","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24237862","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The knee is one of the joints most vulnerable to disease and injury, particularly in athletes and older adults. Surface temperature monitoring provides insights into the health of the analysed area, supporting early diagnosis and monitoring of conditions such as osteoarthritis and tendon injuries. This study presents an innovative approach that combines infrared thermography techniques with a Resnet 152 (DeepLabCut based) to detect and monitor temperature variations across specific knee regions during repeated sit-to-stand exercises. Thermal profiles are then analysed in relation to weight distribution data collected using a Wii Balance Board during the exercise. DeepLabCut was used to automate the selection of the region of interest (ROI) for temperature assessments, improving data accuracy compared to traditional time-consuming semi-automatic methods. This integrative approach enables precise and marker-free measurements, offering clinically relevant data that can aid in the diagnosis of knee pathologies, evaluation of the rehabilitation progress, and assessment of treatment effectiveness. The results emphasize the potential of combining thermography with DeepLabCut-driven data analysis to develop accessible, non-invasive tools for joint health monitoring or preventive diagnostics of pathologies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信