{"title":"Efficient Prediction of Fatigue Damage Analysis of Carbon Fiber Composites Using Multi-Timescale Analysis and Machine Learning.","authors":"Satoru Yoshimori, Jun Koyanagi, Ryosuke Matsuzaki","doi":"10.3390/polym16233448","DOIUrl":null,"url":null,"abstract":"<p><p>Carbon fiber reinforced plastic (CFRP) possesses numerous advantages, such as a light weight and high strength; however, its complex damage mechanisms make the evaluation of fatigue damage particularly challenging. Therefore, this study proposed and demonstrated an entropy-based damage evaluation model for CFRP that leverages the entropy derived from heat capacity measurements and does not require knowledge of the loading history. This entropy-based fatigue degradation model, though accurate, is computationally intensive and impractical for high-cycle analysis. To address this, we reduce computational cost through multi-timescale analysis, replacing cyclic loading with constant displacement loading. Characteristic variables are optimized using the machine learning model LightGBM and the response surface method (RSM), with LightGBM achieving a 75% lower root mean squared error than RSM by increasing features from 3 to 21. This approach cuts analysis time by over 90% while retaining predictive accuracy, showing that LightGBM outperforms RSM and that multi-timescale analysis effectively reduces computational demands.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 23","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16233448","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber reinforced plastic (CFRP) possesses numerous advantages, such as a light weight and high strength; however, its complex damage mechanisms make the evaluation of fatigue damage particularly challenging. Therefore, this study proposed and demonstrated an entropy-based damage evaluation model for CFRP that leverages the entropy derived from heat capacity measurements and does not require knowledge of the loading history. This entropy-based fatigue degradation model, though accurate, is computationally intensive and impractical for high-cycle analysis. To address this, we reduce computational cost through multi-timescale analysis, replacing cyclic loading with constant displacement loading. Characteristic variables are optimized using the machine learning model LightGBM and the response surface method (RSM), with LightGBM achieving a 75% lower root mean squared error than RSM by increasing features from 3 to 21. This approach cuts analysis time by over 90% while retaining predictive accuracy, showing that LightGBM outperforms RSM and that multi-timescale analysis effectively reduces computational demands.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.