Compatibilizer Efficiency in Enhancing Marine Plastic Waste Valorization Through Simulated Recycled Plastic Blends.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2024-12-08 DOI:10.3390/polym16233441
Sibele Piedade Cestari, Pedro Veiga Rodrigues, Ana Cristina Ribeiro, Maria Cidália Rodrigues Castro, Vasco Cruz, Ana Rita Torres, Nuno Ramos, Ana Vera Machado
{"title":"Compatibilizer Efficiency in Enhancing Marine Plastic Waste Valorization Through Simulated Recycled Plastic Blends.","authors":"Sibele Piedade Cestari, Pedro Veiga Rodrigues, Ana Cristina Ribeiro, Maria Cidália Rodrigues Castro, Vasco Cruz, Ana Rita Torres, Nuno Ramos, Ana Vera Machado","doi":"10.3390/polym16233441","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the optimal combination of compatibilizers and stabilizers to enhance the value of marine environment plastic (MEP). The composition of the plastics was analysed, and a simulated recycled plastic blend (sMEP) was prepared based on a simplified composition of actual MEP. Different concentrations of three commercial compatibilizers (C1, C2 and C3) were tested to improve tensile strength. The tensile tests indicated that the blend compatibilized with 10 wt.% C3 (polypropylene grafted with maleic anhydride) exhibited the highest increase in tensile strength. This optimal compatibilization was then combined with two commercial stabilizers and applied to a simulated MEP blend. Scanning electron microscopy images showed that all blends had a continuous polyethylene phase with dispersed poly(ethylene terephthalate) (PET) and polypropylene (PP) droplets. The simulated blend with 10 wt.% C3 exhibited a reduced PET droplet size in the dispersed phase. Differential scanning calorimetry results revealed a decrease in polyethylene crystallinity and an increase in PP crystallinity. The improved properties of the blend were attributed to the effectiveness of the C3 compatibilizer in enhancing the interface between the PP and PET phases. An effective formulation was developed to valorise marine-sourced plastics by leveraging existing scientific knowledge and accessible commercial additives. Applying this enhanced formulation to real MEP not only demonstrated its effectiveness, but also highlighted a practical approach for reducing plastic pollution and supporting circular economy principles, contributing to environmental conservation efforts.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"16 23","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16233441","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the optimal combination of compatibilizers and stabilizers to enhance the value of marine environment plastic (MEP). The composition of the plastics was analysed, and a simulated recycled plastic blend (sMEP) was prepared based on a simplified composition of actual MEP. Different concentrations of three commercial compatibilizers (C1, C2 and C3) were tested to improve tensile strength. The tensile tests indicated that the blend compatibilized with 10 wt.% C3 (polypropylene grafted with maleic anhydride) exhibited the highest increase in tensile strength. This optimal compatibilization was then combined with two commercial stabilizers and applied to a simulated MEP blend. Scanning electron microscopy images showed that all blends had a continuous polyethylene phase with dispersed poly(ethylene terephthalate) (PET) and polypropylene (PP) droplets. The simulated blend with 10 wt.% C3 exhibited a reduced PET droplet size in the dispersed phase. Differential scanning calorimetry results revealed a decrease in polyethylene crystallinity and an increase in PP crystallinity. The improved properties of the blend were attributed to the effectiveness of the C3 compatibilizer in enhancing the interface between the PP and PET phases. An effective formulation was developed to valorise marine-sourced plastics by leveraging existing scientific knowledge and accessible commercial additives. Applying this enhanced formulation to real MEP not only demonstrated its effectiveness, but also highlighted a practical approach for reducing plastic pollution and supporting circular economy principles, contributing to environmental conservation efforts.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信