Abigail M Guillemette, Guillian Hernández Casanova, John P Hamilton, Eva Pokorná, Petre I Dobrev, Václav Motyka, Aaron M Rashotte, Courtney P Leisner
{"title":"The physiological and molecular responses of potato tuberization to projected future elevated temperatures.","authors":"Abigail M Guillemette, Guillian Hernández Casanova, John P Hamilton, Eva Pokorná, Petre I Dobrev, Václav Motyka, Aaron M Rashotte, Courtney P Leisner","doi":"10.1093/plphys/kiae664","DOIUrl":null,"url":null,"abstract":"<p><p>Potato (Solanum tuberosum L.) is one of the most important food crops globally and is especially vulnerable to heat stress. However, substantial knowledge gaps remain in our understanding of the developmental mechanisms associated with tuber responses to heat stress. This study used whole-plant physiology, transcriptomics, and phytohormone profiling to elucidate how heat stress affects potato tuber development. When plants were grown in projected future elevated temperature conditions, abscisic acid (ABA) levels decreased in leaf and tuber tissues, whereas rates of leaf carbon assimilation and stomatal conductance were not significantly affected compared to those plants grown in historical temperature conditions. While plants grown in projected future elevated temperature conditions initiated more tubers per plant on average, there was a 66% decrease in mature tubers at final harvest compared to those plants grown in historical temperature conditions. We hypothesize that reduced tuber yields at elevated temperatures are not due to reduced tuber initiation, but due to impaired tuber filling. Transcriptomic analysis detected significant changes in the expression of genes related to ABA response, heat stress and starch biosynthesis. The tuberization repressor genes SELF PRUNING 5G (StSP5G) and CONSTANS-LIKE1 (StCOL1) were differentially expressed in tubers grown in elevated temperatures. Two additional known tuberization genes, IDENTITY OF TUBER 1 (StIT1) and TIMING OF CAB EXPRESSION 1 (StTOC1), displayed distinct expression patterns under elevated temperatures compared to historical temperature conditions but were not differentially expressed. This work highlights potential gene targets and key developmental stages associated with tuberization to develop potatoes with greater heat tolerance.</p>","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiae664","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Potato (Solanum tuberosum L.) is one of the most important food crops globally and is especially vulnerable to heat stress. However, substantial knowledge gaps remain in our understanding of the developmental mechanisms associated with tuber responses to heat stress. This study used whole-plant physiology, transcriptomics, and phytohormone profiling to elucidate how heat stress affects potato tuber development. When plants were grown in projected future elevated temperature conditions, abscisic acid (ABA) levels decreased in leaf and tuber tissues, whereas rates of leaf carbon assimilation and stomatal conductance were not significantly affected compared to those plants grown in historical temperature conditions. While plants grown in projected future elevated temperature conditions initiated more tubers per plant on average, there was a 66% decrease in mature tubers at final harvest compared to those plants grown in historical temperature conditions. We hypothesize that reduced tuber yields at elevated temperatures are not due to reduced tuber initiation, but due to impaired tuber filling. Transcriptomic analysis detected significant changes in the expression of genes related to ABA response, heat stress and starch biosynthesis. The tuberization repressor genes SELF PRUNING 5G (StSP5G) and CONSTANS-LIKE1 (StCOL1) were differentially expressed in tubers grown in elevated temperatures. Two additional known tuberization genes, IDENTITY OF TUBER 1 (StIT1) and TIMING OF CAB EXPRESSION 1 (StTOC1), displayed distinct expression patterns under elevated temperatures compared to historical temperature conditions but were not differentially expressed. This work highlights potential gene targets and key developmental stages associated with tuberization to develop potatoes with greater heat tolerance.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.