Jessica Arnhold, Facundo R Ispizua Yamati, Henning Kage, Anne-Katrin Mahlein, Heinz-Josef Koch, Dennis Grunwald
{"title":"Minirhizotron measurements can supplement deep soil coring to evaluate root growth of winter wheat when certain pitfalls are avoided.","authors":"Jessica Arnhold, Facundo R Ispizua Yamati, Henning Kage, Anne-Katrin Mahlein, Heinz-Josef Koch, Dennis Grunwald","doi":"10.1186/s13007-024-01313-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Root growth is most commonly determined with the destructive soil core method, which is very labor-intensive and destroys the plants at the sampling spots. The alternative minirhizotron technique allows for root growth observation throughout the growing season at the same spot but necessitates a high-throughput image analysis for being labor- and cost-efficient. In this study, wheat root development in agronomically varied situations was monitored with minirhizotrons over the growing period in two years, paralleled by destructive samplings at two dates. The aims of this study were to (i) adapt an existing CNN-based segmentation method for wheat minirhizotron images, (ii) verify the results of minirhizotron measurements with root growth data obtained by the destructive soil core method, and (iii) investigate the effect of the presence of the minirhizotron tubes on root growth.</p><p><strong>Results: </strong>The previously existing CNN could successfully be adapted for wheat root images. The minirhizotron technique seems to be more suitable for root growth observation in the subsoil, where a good agreement with destructively gathered data was found, while root length results in the topsoil were dissatisfactory in comparison to the soil core method in both years. The tube presence was found to affect root growth only if not installed with a good soil-tube contact which can be achieved by slurrying, i.e. filling gaps with a soil/water suspension.</p><p><strong>Conclusions: </strong>Overall, the minirhizotron technique in combination with high-throughput image analysis seems to be an alternative and valuable technique for suitable research questions in root research targeting the subsoil.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"183"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01313-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Root growth is most commonly determined with the destructive soil core method, which is very labor-intensive and destroys the plants at the sampling spots. The alternative minirhizotron technique allows for root growth observation throughout the growing season at the same spot but necessitates a high-throughput image analysis for being labor- and cost-efficient. In this study, wheat root development in agronomically varied situations was monitored with minirhizotrons over the growing period in two years, paralleled by destructive samplings at two dates. The aims of this study were to (i) adapt an existing CNN-based segmentation method for wheat minirhizotron images, (ii) verify the results of minirhizotron measurements with root growth data obtained by the destructive soil core method, and (iii) investigate the effect of the presence of the minirhizotron tubes on root growth.
Results: The previously existing CNN could successfully be adapted for wheat root images. The minirhizotron technique seems to be more suitable for root growth observation in the subsoil, where a good agreement with destructively gathered data was found, while root length results in the topsoil were dissatisfactory in comparison to the soil core method in both years. The tube presence was found to affect root growth only if not installed with a good soil-tube contact which can be achieved by slurrying, i.e. filling gaps with a soil/water suspension.
Conclusions: Overall, the minirhizotron technique in combination with high-throughput image analysis seems to be an alternative and valuable technique for suitable research questions in root research targeting the subsoil.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.