The essential role of the hickory StMADS11 subfamily in flower organogenesis and flowering time in Arabidopsis.

IF 6.1 2区 生物学 Q1 PLANT SCIENCES
Caiyun Li, Zhengfu Yang, Zhichao Sun, Di Wu, Bo Zhang, Hongmiao Jin, Kean-Jin Lim, Zhengjia Wang
{"title":"The essential role of the hickory StMADS11 subfamily in flower organogenesis and flowering time in Arabidopsis.","authors":"Caiyun Li, Zhengfu Yang, Zhichao Sun, Di Wu, Bo Zhang, Hongmiao Jin, Kean-Jin Lim, Zhengjia Wang","doi":"10.1016/j.plaphy.2024.109402","DOIUrl":null,"url":null,"abstract":"<p><p>The StMADS11 subfamily genes play a crucial role in regulating flowering time, flower development, and bud dormancy in plants. These genes exhibit functional differences between annual and perennial woody plants. In hickory (Carya cathayensis Sarg.), the specific roles of these genes in flowering regulation have not been elucidated. In this study, we identified five StMADS11 subfamily genes in the hickory genome, designated as CcSVP-like, CcAGL24-like1, CcAGL24-like2, CcJOINTLESS-like1, and CcJOINTLESS-like2, based on their clustering characteristics. Sequence analyses revealed distinct structural features in this subfamily, including differences in intron length, C domain, and conserved motifs. Transcript analysis indicated high expression levels of these genes in female flower buds, along with a notable seasonal expression pattern. Overexpression studies on Arabidopsis have demonstrated that the StMADS11 subfamily genes lead to various floral organ and pod anomalies. Specifically, overexpression of CcSVP-like resulted in delayed flowering, while overexpression of CcAGL24-like1, CcAGL24-like2, CcJOINTLESS-like1, and CcJOINTLESS-like2 promoted flowering. Protein interaction studies have shown that the StMADS11 subfamily proteins bind to the CcFUL-like protein. Notably, CcFUL-like, CcSVP-like, CcJOINTLESS-like1, and CcJOINTLESS-like2 proteins were able to bind to the CcSOC1-like promoter and suppress its expression. Our findings elucidate the distinct roles of the StMADS11 subfamily genes in flower development and timing, contribute to developing the current understanding of flowering regulation in hickory, and offer a foundation for further studies in perennial woody plants.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"219 ","pages":"109402"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109402","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The StMADS11 subfamily genes play a crucial role in regulating flowering time, flower development, and bud dormancy in plants. These genes exhibit functional differences between annual and perennial woody plants. In hickory (Carya cathayensis Sarg.), the specific roles of these genes in flowering regulation have not been elucidated. In this study, we identified five StMADS11 subfamily genes in the hickory genome, designated as CcSVP-like, CcAGL24-like1, CcAGL24-like2, CcJOINTLESS-like1, and CcJOINTLESS-like2, based on their clustering characteristics. Sequence analyses revealed distinct structural features in this subfamily, including differences in intron length, C domain, and conserved motifs. Transcript analysis indicated high expression levels of these genes in female flower buds, along with a notable seasonal expression pattern. Overexpression studies on Arabidopsis have demonstrated that the StMADS11 subfamily genes lead to various floral organ and pod anomalies. Specifically, overexpression of CcSVP-like resulted in delayed flowering, while overexpression of CcAGL24-like1, CcAGL24-like2, CcJOINTLESS-like1, and CcJOINTLESS-like2 promoted flowering. Protein interaction studies have shown that the StMADS11 subfamily proteins bind to the CcFUL-like protein. Notably, CcFUL-like, CcSVP-like, CcJOINTLESS-like1, and CcJOINTLESS-like2 proteins were able to bind to the CcSOC1-like promoter and suppress its expression. Our findings elucidate the distinct roles of the StMADS11 subfamily genes in flower development and timing, contribute to developing the current understanding of flowering regulation in hickory, and offer a foundation for further studies in perennial woody plants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信