Leveraging Femtosecond Laser Ablation for Tunable Near-Infrared Optical Properties in MoS2-Gold Nanocomposites.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-12-06 DOI:10.3390/nano14231961
Ilya A Zavidovskiy, Ilya V Martynov, Daniil I Tselikov, Alexander V Syuy, Anton A Popov, Sergey M Novikov, Andrei V Kabashin, Aleksey V Arsenin, Gleb I Tselikov, Valentyn S Volkov, Alexey D Bolshakov
{"title":"Leveraging Femtosecond Laser Ablation for Tunable Near-Infrared Optical Properties in MoS<sub>2</sub>-Gold Nanocomposites.","authors":"Ilya A Zavidovskiy, Ilya V Martynov, Daniil I Tselikov, Alexander V Syuy, Anton A Popov, Sergey M Novikov, Andrei V Kabashin, Aleksey V Arsenin, Gleb I Tselikov, Valentyn S Volkov, Alexey D Bolshakov","doi":"10.3390/nano14231961","DOIUrl":null,"url":null,"abstract":"<p><p>Transition metal dichalcogenides (TMDCs), particularly molybdenum disulfide (MoS<sub>2</sub>), have gained significant attention in the field of optoelectronics and photonics due to their unique electronic and optical properties. The integration of TMDCs with plasmonic materials allows to tailor the optical response and offers significant advantages for photonic applications. This study presents a novel approach to synthesize MoS<sub>2</sub>-Au nanocomposites utilizing femtosecond laser ablation in liquid to achieve tunable optical properties in the near-infrared (NIR) region. By adjusting ablation and fragmentation protocols, we successfully synthesize various core-shell and core-shell-satellite nanoparticle composites, such as MoS<sub>2</sub>/MoS<sub>x</sub>O<sub>y</sub>, MoS<sub>x</sub>O<sub>y</sub>/Au, and MoS<sub>2</sub>/MoS<sub>x</sub>O<sub>y</sub>/Au. UV-visible absorption spectroscopy unveils considerable changes in the optical response of the particles depending on the fabrication regime due to structural modifications. Hybrid nanoparticles exhibit enhanced photothermal properties when subjected to NIR-I laser irradiation, demonstrating potential benefits for selective photothermal therapy. Our findings underscore that the engineered nanocomposites not only facilitate green synthesis but also pave the way for tailored therapeutic applications, highlighting their role as promising candidates in the field of nanophotonics and cancer treatment.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231961","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal dichalcogenides (TMDCs), particularly molybdenum disulfide (MoS2), have gained significant attention in the field of optoelectronics and photonics due to their unique electronic and optical properties. The integration of TMDCs with plasmonic materials allows to tailor the optical response and offers significant advantages for photonic applications. This study presents a novel approach to synthesize MoS2-Au nanocomposites utilizing femtosecond laser ablation in liquid to achieve tunable optical properties in the near-infrared (NIR) region. By adjusting ablation and fragmentation protocols, we successfully synthesize various core-shell and core-shell-satellite nanoparticle composites, such as MoS2/MoSxOy, MoSxOy/Au, and MoS2/MoSxOy/Au. UV-visible absorption spectroscopy unveils considerable changes in the optical response of the particles depending on the fabrication regime due to structural modifications. Hybrid nanoparticles exhibit enhanced photothermal properties when subjected to NIR-I laser irradiation, demonstrating potential benefits for selective photothermal therapy. Our findings underscore that the engineered nanocomposites not only facilitate green synthesis but also pave the way for tailored therapeutic applications, highlighting their role as promising candidates in the field of nanophotonics and cancer treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信