{"title":"C/Ni/N Nanocomposites Based on Hydrolysis Lignin: Synthesis, Study of Structural and Magnetic Properties.","authors":"Ihor Bordun, Dariusz Calus, Ewelina Szymczykiewicz, Myroslav Malovanyy, Nazar Nahurskyi, Anatoliy Borysiuk, Yuriy Kulyk","doi":"10.3390/nano14231886","DOIUrl":null,"url":null,"abstract":"<p><p>A two-step method for the synthesis of C/Ni/N nanocomposites based on hydrolysis lignin from wood chemical processing waste is proposed. These nanocomposites were found to have a well-developed porous structure with a wide pore size distribution. It was shown that doping hydrolysis lignin with urea-derived nitrogen leads to the appearance of ferromagnetic behavior in the carbon material. When nickel chloride was added during pyrolysis, the magnetic behavior of the C/Ni/N composite was provided by superparamagnetic Ni particles less than 30 nm in size and the magnetism of the carbon matrix. The addition of urea during the synthesis of the nanocomposite further promotes better integration of nickel into the carbon structure. According to the results of magnetic studies, the nickel content in the C/Ni/N nanocomposite was 19 wt.% compared to 15 wt.% in the C/Ni nanocomposite. The synthesized nanocomposite was demonstrated to have no residual magnetization, so its particles do not agglomerate after the external magnetic field is removed. Due to this property and the well-developed porous structure, C/Ni/N composites have the potential to be used as catalysts, active electrode materials for autonomous energy sources, and in environmental technologies as magnetically sensitive adsorbents.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231886","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A two-step method for the synthesis of C/Ni/N nanocomposites based on hydrolysis lignin from wood chemical processing waste is proposed. These nanocomposites were found to have a well-developed porous structure with a wide pore size distribution. It was shown that doping hydrolysis lignin with urea-derived nitrogen leads to the appearance of ferromagnetic behavior in the carbon material. When nickel chloride was added during pyrolysis, the magnetic behavior of the C/Ni/N composite was provided by superparamagnetic Ni particles less than 30 nm in size and the magnetism of the carbon matrix. The addition of urea during the synthesis of the nanocomposite further promotes better integration of nickel into the carbon structure. According to the results of magnetic studies, the nickel content in the C/Ni/N nanocomposite was 19 wt.% compared to 15 wt.% in the C/Ni nanocomposite. The synthesized nanocomposite was demonstrated to have no residual magnetization, so its particles do not agglomerate after the external magnetic field is removed. Due to this property and the well-developed porous structure, C/Ni/N composites have the potential to be used as catalysts, active electrode materials for autonomous energy sources, and in environmental technologies as magnetically sensitive adsorbents.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.