Effect of a Modern Palaeolithic Diet in Combination with a Sprint Interval Training on Metabolic and Performance-Related Parameters in Male Athletes: A Pilot Trial.
Denise Zdzieblik, Tobias Waldvogel, Anna Zierke, Albert Gollhofer, Daniel König
{"title":"Effect of a Modern Palaeolithic Diet in Combination with a Sprint Interval Training on Metabolic and Performance-Related Parameters in Male Athletes: A Pilot Trial.","authors":"Denise Zdzieblik, Tobias Waldvogel, Anna Zierke, Albert Gollhofer, Daniel König","doi":"10.1177/11786388241299896","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Although a palaeolithic diet promotes healthier food choices that aid in weight management and reduce cardiovascular risks, its effectiveness in endurance sports is still debated due to its typically low carbohydrate content.</p><p><strong>Objective: </strong>This study examined the impact of a 6-week palaeolithic diet (PD-G) versus a mixed diet (MD-G), both paired with Sprint interval training (SIT), on various metabolic and performance-related parameters.</p><p><strong>Methods: </strong>Body composition, time trial (TT) performance (covered distance during a 60-minute run on a 400-metre track) and changes in metabolic (respiratory exchange ratio [RER], substrate oxidation rates) and performance-related (time at ventilatory threshold [VT] and respiratory compensation point [RCP], maximum oxygen uptake (V̇O<sub>2max</sub>) and time to exhaustion [TTE]) parameters during a ramp incremental running test were assessed in 14 male endurance athletes. Additionally, Gastrointestinal Quality of Life index (GLQI) and perceptual responses to the diets [visual analogue scale (VAS)] were measured.</p><p><strong>Results: </strong>After 6 weeks, both groups improved in TTE and distance covered in the 60-minute TT, without significant group differences. In the PD-G body weight, fat mass and systolic and diastolic blood pressure decreased. At rest, RER and carbohydrate oxidation significantly decreased in the PD-G, with a tendency towards significance during exercise, while changes in fat oxidation rates were not statistically significant at rest and throughout the exercise test; in contrast, the MD-G exhibited smaller changes across these parameters.</p><p><strong>Conclusion: </strong>In this investigation, a palaeolithic diet in combination with SIT appeared to have positive effects on fat mass, blood pressure and substrate utilization under resting conditions in a group of male endurance athletes. However, based on the current findings for performance metrics, a palaeolithic diet cannot be recommended unreservedly for healthy endurance athletes.</p>","PeriodicalId":19396,"journal":{"name":"Nutrition and Metabolic Insights","volume":"17 ","pages":"11786388241299896"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648029/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition and Metabolic Insights","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786388241299896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Although a palaeolithic diet promotes healthier food choices that aid in weight management and reduce cardiovascular risks, its effectiveness in endurance sports is still debated due to its typically low carbohydrate content.
Objective: This study examined the impact of a 6-week palaeolithic diet (PD-G) versus a mixed diet (MD-G), both paired with Sprint interval training (SIT), on various metabolic and performance-related parameters.
Methods: Body composition, time trial (TT) performance (covered distance during a 60-minute run on a 400-metre track) and changes in metabolic (respiratory exchange ratio [RER], substrate oxidation rates) and performance-related (time at ventilatory threshold [VT] and respiratory compensation point [RCP], maximum oxygen uptake (V̇O2max) and time to exhaustion [TTE]) parameters during a ramp incremental running test were assessed in 14 male endurance athletes. Additionally, Gastrointestinal Quality of Life index (GLQI) and perceptual responses to the diets [visual analogue scale (VAS)] were measured.
Results: After 6 weeks, both groups improved in TTE and distance covered in the 60-minute TT, without significant group differences. In the PD-G body weight, fat mass and systolic and diastolic blood pressure decreased. At rest, RER and carbohydrate oxidation significantly decreased in the PD-G, with a tendency towards significance during exercise, while changes in fat oxidation rates were not statistically significant at rest and throughout the exercise test; in contrast, the MD-G exhibited smaller changes across these parameters.
Conclusion: In this investigation, a palaeolithic diet in combination with SIT appeared to have positive effects on fat mass, blood pressure and substrate utilization under resting conditions in a group of male endurance athletes. However, based on the current findings for performance metrics, a palaeolithic diet cannot be recommended unreservedly for healthy endurance athletes.
期刊介绍:
Nutrition and Metabolic Insights is a peer-reviewed, open-access online journal focusing on all aspects of nutrition and metabolism. This encompasses nutrition, including the biochemistry of metabolism, exercise and associated physical processes and also includes clinical articles that relate to metabolism, such as obesity, lipidemias and diabetes. It includes research at the molecular, cellular and organismal levels. This journal welcomes new manuscripts for peer review on the following topics: Nutrition, including the biochemistry of metabolism, Exercise and associated physical processes, Clinical articles that relate to metabolism, such as obesity, lipidemias and diabetes, Research at the molecular, cellular and organismal levels, Other areas of interest include gene-nutrient interactions, the effects of hormones, models of metabolic function, macronutrient interactions, outcomes of changes in diet, and pathophysiology.