Additive Manufacturing of Binary and Ternary Oxide Systems Using Two-Photon Polymerization and Low-Temperature Sintering.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-12-09 DOI:10.3390/nano14231977
Halima El Aadad, Hicham El Hamzaoui, Yves Quiquempois, Marc Douay
{"title":"Additive Manufacturing of Binary and Ternary Oxide Systems Using Two-Photon Polymerization and Low-Temperature Sintering.","authors":"Halima El Aadad, Hicham El Hamzaoui, Yves Quiquempois, Marc Douay","doi":"10.3390/nano14231977","DOIUrl":null,"url":null,"abstract":"<p><p>Multicomponent oxide systems have many applications in different fields such as optics and medicine. In this work, we developed new hybrid photoresists based on a combination of an organic acrylate resin and an inorganic sol, suitable for 3D printing via two-photon polymerization (2PP). The inorganic sol contained precursors of a binary SiO<sub>2</sub>-CaO or a ternary SiO<sub>2</sub>-CaO-P<sub>2</sub>O<sub>5</sub> system. Complex microstructures were 3D printed using these hybrid photoresists and 2PP. The obtained materials were characterized using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) techniques. Our results revealed that the produced microstructures were able to endure sintering at 700 °C without collapsing, leading to scaffolds with 235 and 355 nm resolution and pore size, respectively. According to the TGA analysis, there was no significant mass loss beyond 600 °C. After sintering at 500 °C, the FTIR spectra showed the disappearance of the characteristic bands associated with the organic phase, and the presence of bands characteristic of the binary and ternary oxide systems and carbonate groups. The SEM images showed different morphologies of agglomerated nanoparticles with mean sizes of about 20 and 60 nm for ternary and binary systems, respectively. Our findings open the way towards precise control of bioglass scaffold fabrication with tremendous design flexibility.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 23","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14231977","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Multicomponent oxide systems have many applications in different fields such as optics and medicine. In this work, we developed new hybrid photoresists based on a combination of an organic acrylate resin and an inorganic sol, suitable for 3D printing via two-photon polymerization (2PP). The inorganic sol contained precursors of a binary SiO2-CaO or a ternary SiO2-CaO-P2O5 system. Complex microstructures were 3D printed using these hybrid photoresists and 2PP. The obtained materials were characterized using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) techniques. Our results revealed that the produced microstructures were able to endure sintering at 700 °C without collapsing, leading to scaffolds with 235 and 355 nm resolution and pore size, respectively. According to the TGA analysis, there was no significant mass loss beyond 600 °C. After sintering at 500 °C, the FTIR spectra showed the disappearance of the characteristic bands associated with the organic phase, and the presence of bands characteristic of the binary and ternary oxide systems and carbonate groups. The SEM images showed different morphologies of agglomerated nanoparticles with mean sizes of about 20 and 60 nm for ternary and binary systems, respectively. Our findings open the way towards precise control of bioglass scaffold fabrication with tremendous design flexibility.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信