Martin Rosentritt, Anne Schmutzler, Sebastian Hahnel, Laura Kurzendorfer-Brose
{"title":"The Influence of CLSM Magnification on the Measured Roughness of Differently Prepared Dental Materials.","authors":"Martin Rosentritt, Anne Schmutzler, Sebastian Hahnel, Laura Kurzendorfer-Brose","doi":"10.3390/ma17235954","DOIUrl":null,"url":null,"abstract":"<p><p>This in vitro study investigated how varying magnifications (5×, 10×, 20×, and 50×) using a confocal laser scanning microscope (CLSM) influence the measured surface roughness parameters, R<sub>a</sub>/S<sub>a</sub> and R<sub>z</sub>/S<sub>z</sub>, of various materials with two surface treatments. Cylindrical specimens (d ≈ 8 mm, h ≈ 3 mm, <i>n</i> = 10) from titanium, zirconia, glass-ceramic, denture base material, and composite underwent diamond treatment (80 μm; wet) and polishing (#4000; wet; Tegramin-25, Struers, G). The surface roughness parameters (R<sub>a</sub>/S<sub>a</sub>, R<sub>z</sub>/S<sub>z</sub>) were measured with a CLSM (VK-100, Keyence, J) at 5×, 10×, 20×, and 50× magnifications. Line roughness (R<sub>a</sub>/R<sub>z</sub>) was measured along a 1000 μm distance in three parallel lines, while area roughness (S<sub>a</sub>/S<sub>z</sub>) was evaluated over a 2500 μm × 1900 μm area. The statistical analysis included ANOVA, the Bonferroni post hoc test, and Pearson correlation (SPSS 29, IBM, USA; α = 0.05). R<sub>a</sub>/S<sub>a</sub> and R<sub>z</sub>/S<sub>z</sub> showed significant differences (<i>p</i> ≤ 0.001, ANOVA) across magnifications, with values decreasing as magnification increased, highest at 5× and lowest at 50×. Titanium, zirconia, and glass-ceramic showed significant measured roughness values from 5× to 50×. Denture base material and composite had lower measured roughness values, especially after polishing. Line and area roughness varied significantly, indicating that magnification affects measured values. Standardizing magnifications is essential to ensure comparability between studies. A 50× magnification captures more detailed profile information while masking larger defects.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"17 23","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11643955/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17235954","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This in vitro study investigated how varying magnifications (5×, 10×, 20×, and 50×) using a confocal laser scanning microscope (CLSM) influence the measured surface roughness parameters, Ra/Sa and Rz/Sz, of various materials with two surface treatments. Cylindrical specimens (d ≈ 8 mm, h ≈ 3 mm, n = 10) from titanium, zirconia, glass-ceramic, denture base material, and composite underwent diamond treatment (80 μm; wet) and polishing (#4000; wet; Tegramin-25, Struers, G). The surface roughness parameters (Ra/Sa, Rz/Sz) were measured with a CLSM (VK-100, Keyence, J) at 5×, 10×, 20×, and 50× magnifications. Line roughness (Ra/Rz) was measured along a 1000 μm distance in three parallel lines, while area roughness (Sa/Sz) was evaluated over a 2500 μm × 1900 μm area. The statistical analysis included ANOVA, the Bonferroni post hoc test, and Pearson correlation (SPSS 29, IBM, USA; α = 0.05). Ra/Sa and Rz/Sz showed significant differences (p ≤ 0.001, ANOVA) across magnifications, with values decreasing as magnification increased, highest at 5× and lowest at 50×. Titanium, zirconia, and glass-ceramic showed significant measured roughness values from 5× to 50×. Denture base material and composite had lower measured roughness values, especially after polishing. Line and area roughness varied significantly, indicating that magnification affects measured values. Standardizing magnifications is essential to ensure comparability between studies. A 50× magnification captures more detailed profile information while masking larger defects.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.